
Learning Local Advantage Functions for
Generalizable Graph Optimizations

Yifan Wu∗, Yanqi Zhou, Phitchaya Mangpo Phothilimthana, Hanxiao Liu, Sudip Roy, Azalia Mirhoseini
Google Brain

Mountain View, CA 94043
yw4@andrew.cmu.edu, {yanqiz,mangpo,hanxiaol,sudipr,azalia}@google.com

Abstract

Machine learning compilers rely on making optimized decisions in order to generate
efficient code for a given computation graph. Many of these decision making
processes can be formulated as graph optimization problems. The solution to
these graph optimization problems is typically computed based on human designed
heuristics. Learning/search-based methods have been recently investigated to
improve upon or remove the need of human designed heuristics. However, existing
methods that can reliably provide high quality solutions require iterative evaluations
on real hardware. The evaluations can be costly especially for large graphs, making
these methods infeasible to be deployed in production. To reduce or eliminate the
evaluation cost, learning graph optimization strategies that can generalize across
graphs is desirable. In this work, we propose learning local advantage functions
for generalizable compiler graph optimizations. The learned model can be trained
offline with supervised learning on massive amount of training data and then used to
guide the search of optimal decisions on previously unseen graphs. We demonstrate
the effectiveness of our approach on the operation fusion task and discuss several
challenges we encountered in practice.

1 Introduction

Training complex neural networks usually requires hardware accelerators like GPUs and TPUs. The
hardware acceleration relies on machine learning compilers [8, 15, 11, 4], to generate machine code
that runs efficiently given high level computation graphs. To generate efficient machine code, the
machine learning compiler needs to make many optimized decisions in different stages of compilation
including graph rewriting [17, 10], device placement [12, 13, 18], operation fusion [1], layout
assignment, scheduling, and tiling of tensors [5]. For many of these optimization stages, the decision
making process can be formulated as combinatorial graph optimization problems with an objective to
minimize the computation run time on the target accelerator. These optimization problems often have
an exponentially large search space. Current ML compilers usually fall back to domain-knowledge
based heuristic solutions that explore only a small fragment of this search space, and therefore settle
for sub-optimal solutions that can found in reasonable search time.

Recent works[12, 13, 7, 18] have used reinforcement learning (RL) and search successfully applied on
some of these compiler optimization tasks, and have achieved state-of-the-art results by outperforming
heuristic solutions. However, to effectively explore the large search space, these methods require
massive number of evaluations. In the absence of a reliable cost model, these evaluations require
actual runs on hardware and can be very expensive, often taking few minutes for large computational
graphs. The expensive evaluation can limit the RL or search quality as obtaining a single sample can
take very long or consume too much computational resources.

∗Carnegie Mellon University. Work performed while an intern at Google.

NeurIPS 2020 Workshop on Machine Learning for Systems

One of the key ways to overcome this limitation is to ensure that the learned approach generalizes
well across different computational graphs and for different optimization tasks. Current approaches
at generalization can be broadly categorized into three main categories. First, by using a learned cost
model. An accurate cost model can be hard to learn as the run time (label) for large graphs is of
significant higher scale than small graphs. Neural network models lack the ability to do extrapolation
in such cases. Second, by directly learning a shared policy across graphs. Although the distribution
shift in graph size can be addressed by having size-invariant parameterized models, e.g. graph neural
networks, the learned policy tends to under-perform on unseen graphs in practice since zero-shot
learning can be hard. Finally, by pre-training offline then fine-tuning on specific graphs online. This
is a widely applied approach for the purpose of improving sample efficiency on new tasks in both
prediction (e.g., supervised learning) and decision making (e.g. RL). Each of the fore-mentioned
approaches to generalization does not work well in the presence of distributional shifts, and requires
task-specific training, which together make it hard to reuse for newer tasks and environments.

In this paper, we focus on developing methods that can achieve generalization across computational
graphs in the presence of substantial distribution shift: we aim at learning from experience on
relatively small computation graphs and testing on unseen (and potentially much larger) graphs.
Building on the empirical observation that search based strategies often outperform RL approaches
on harder tasks such as operation fusion, our approach combines the learned guided exploration
strategy with progressive search. Our approach is to learn single node advantage functions from
existing graphs and use the learned model to guide exploration on new graphs for improving sample
efficiency. Our experiments on the operation fusion task show that our guided exploration is able to
help a progressive search agent find similarly good or better solutions within less than 50% of the
number of samples compared to non-guided search.

2 Related Work

RL for Graph Optimization Reinforcement learning has been used for optimizing device placement
[12, 7, 13]. Hierarchical Device Placement (HDP) [13], Spotlight [7], and Placeto [2] progres-
sively generate decisions on a per-node basis, which is computationally inefficient on large graphs.
NeuRewriter [6] is a generic rewriting system that uses RL to solve combinatorial optimization
problems. In terms of generalization across graphs, all of these methods can be used in a pretrain-
then-finetune manner or combined with any guided exploration strategies, and thus orthogonal to our
work.

ML Compiler Optimization Machine learning has been applied to optimize the execution time of
tensor computation graphs [14, 16, 3, 5, 18]. Among these works, GO [18] achieves generalization
by jointly training a policy on multiple graphs then finetuning on unseen graphs. In their work,
they randomly sample a single hold-out graph from a set of graphs as the unseen graph to test for
generalization, which suffers less distribution shift compared to our setting. The generalization
strategy of GO follows the pretrain-then-finetune pattern while we explore the direction of using
learning to guide exploration. REGAL [14] leverages a learned policy to guide search on new graphs
for generalization. The difference between REGAL and our work is that (i) REGAL performs
evaluations on a performance model while we consider evaluations on real hardware and (ii) using a
learned policy to guide search requires online pretraining (using RL or contextual bandits) on existing
graphs, which is resource costly and slow if evaluations are done on real hardware. In our approach,
the local advantage function can be learned offline on pre-collected data in a supervised way, thus
retraining a model does not requires recollecting data from real hardwares. Also supervised learning
is a more stable (e.g., less sensitive to hyperparameter tuning) technique compared to contextual
bandits or RL.

3 Method

Given a graph G = (V,E), a graph optimization problem can be expressed as finding the optimal
configuration for a set of configurable nodes Vc ⊂ V . Each configuration can be written as a vector
~y = [yv ∈ Y : v ∈ Vc] where Y is a discrete decision space, e.g. Y = {1, ...,K}. In compiler
optimization tasks we also have access to additional features X = [xv : v ∈ V], such as operation
type, input and output tensor shape, etc. Decisions can be made conditioned on the graph structure as
well as these node features. The goal is to minimize some cost function cost(~y;G,X). The cost

2

function does not have an analytical form and can only be queried by actually evaluating proposed
configurations.

We propose to learn the single node advantage function:

f (yv = k; ~yv− , G,X) = cost(yv = k, ~yv− ;G,X)− cost(yv = 1, ~yv− ;G,X) ,

for each k ∈ Y . Here ~yv− denotes the configuration on other nodes except yv. The advantage
function outputs the difference in cost by flipping the decision at a single node given an existing
configuration. This function is (i) easy to train with supervised learning using offline collected data
and (ii) usually invariant of graph size in compiler optimization tasks, enabling generalization from
smaller graphs to large ones. f can be parameterize as graph neural networks like GraphSAGE [9].

The learned local advantage function can then be applied to expedite search on unseen graphs.
Although the potential usage of the local advantage function in search can be quite flexible, in
our experiments we use the predictions to prioritize important nodes (where the mutation of node
decisions results in large cost differences) for mutation in progressive search, and would leave
other possible integration as future work. For example, one may noticed that knowing the single
node advantage function may eliminate the need of real evaluations since we can compare any two
configurations by build a path between the two configurations by flipping the decision on a single
node at each time. However, this required a highly accurate learned advantage function. In our
experiments, we found that when generalizing to new graphs, the quality of the learned f if not good
enough to totally replace real evaluations. As a result, we first investigate the direction of using a
learned f to accelerate search, i.e. reduce the number of evaluations, while leaving eliminating real
evaluations as a future direction.

4 Experiments

We experiment on the operation fusion task [1] in the Tensorflow-XLA compiler, where at each
node the compiler needs make a binary decision (Y = {1, 2}) to determine whether to fuse the
operation into its consumer when running on TPUs. In the following we describe how we utilize local
advantage learning to achieve generalization on this task and how we addressed several challenges in
our experiments.

4.1 Data Collection

The datasets are collected by running Gibbs sampling on a set of training graphs. Gibbs sampling
on a graph G = (V,E) starts from a given configuration, and iterates over the indices of nodes
v = 1, ..., |V | and sample from p(yv|~yv−), where the conditional distribution of the decision yv on
specific node v conditioned on the other nodes ~yv− is defined by p(yv = k|~yv−) ∝ exp(−cost(yv =
k, ~yv−)/τ), where τ is a positive temperature parameter. During Gibbs sampling, for each node v
to be mutated, all possible decisions yv ∈ Y will be evaluated in order to compute p(yv = k|yv−).
Therefore, the configuration-cost pairs collected during Gibbs sampling is sufficient for training the
local advantage function in a supervised way.

4.2 Learning

Although given the collected data described above, learning the advantage function f is simply a
supervised regression problem, there are still multiple challenges handling real-world compiler data.
We list the major challenges we found with the operation fusion task and discuss how we addressed
these problems as follows.

Label scale We found that the label (node advantage) scale can be drastically different across
graphs. For example, among the benchmarks we are working on, the label scale in GraphNets is 10
times larger than the label scale in DeepRank. With these labels unchanged, the learned function
will only fit the samples in GraphNets as the labels in DeepRank are just like noise in GraphNets.
To resolve this, we look into the direction of predicting the log scale of the labels, e.g. predict
sign(adv) ∗ log(1 + |adv|/σ), where the σ is a graph-dependent quantity that reflects the scale of
single node advantage for each graph. We simply take σ to be the median of the absolute value of the
advantages among the samples collected for a single graph. With this label transformation, the new

3

labels are of the same range across different graphs and the effective labels range much larger than
the noise level.

Imbalanced data We also notice that, among all samples collected for a single graph, only less
than 10% of the samples come from significant decisions while the remaining ones are non-significant
(the flipping of decisions do not significantly affect run time). This affects both training efficiency
and generalization. To resolve this, we perform a prioritized sampling when sampling mini-batches:
for 90% percent of the time we sample the data with the top 10% absolute value of advantages. This
allows us to focus on the important region of the graph when training the advantage function while
not over-fitting to the noisy insignificant nodes.

Advantage Direction We also find that the direction (sign) of the advantages are hard to predict,
so we choose to predict the absolute value of the advantage, which is still useful for accelerating
search as we will show later.

4.3 Guided Search

We propose the following guided search procedure to utilize the learned advantage function. Each
guided search step is performed as:

• Get the prediction of absolute advantage values for all nodes.
• Select the top α% nodes according to their absolute advantages and randomly sample a

single node from them.
• Randomly mutate a k-neighborhood of the selected node.
• Keep the better configuration for the next step.

The (none-guided) random search replaces the first two steps with selecting a node uniformly at
random, which we found to be able to consistently find better configurations. Our hypothesis is that
the learned advantage function contains information about which nodes are important and mutating
important nodes (and their adjacent nodes) more often can reduce the amount of evaluations needed
to search for a good configuration.

4.4 Evaluation

In our experiments, we first train a local advantage function on a set of 10 computation graphs (with
500 ∼ 5000 configurable nodes) and evaluate our guided search against (non-guided) random search
(random search) on graphs that are not in the training set (testing generalization). To evaluate the
ability of improving over human heuristics, we compare guided search and random search initialized
with the default configuration by the Tensorflow-XLA compiler. Table 1 summarizes the results. The
results show the guided search can find a better configuration or a similarly good configuration using
less evaluations (samples) compared to random search.

Benchmark Graph Size Guided #Samples Random #Samples

GraphNets 1532 18% 1400 18% 3500
Unet 2626 5% 300 5% 4500
DeepRank 532 5% 2000 5% 4500
MNasNet 5713 2% 2100 2.8% 3000
SSDModileNet 22176 2.3% 400 0.5% 100

Table 1: Comparing guided search v.s. random search when searching from the default configuration.
Reported performance numbers are relative improvements over the default configuration. The
#Samples column reports the number of evaluations needed to find such improved configurations.
The Graph Size column reports the number of configurable nodes for each computation graph.

To evaluate the ability of replacing human heuristics, we also compare guided search and random
search initialized with a random configuration. Figure 1 shows that our guided search consistently

4

achieve a better sample efficiency by a large margin compared to random search when initialing from
a random configuration.

Figure 1: Comparing guided search v.s. random search when searching from a random configuration.
Reported performance numbers are relative improvements over the default configuration.

5 Conclusion

We investigate the problem of developing compiler graph optimization strategies that can generalize
across graphs in the presence of distribution shift. We propose to learn single-node advantage func-
tions offline from pre-collected data through supervised learning then apply the learned advantage
function to guide exploration when searching optimized configurations on new graphs. Our exper-
iments show that, on the operation fusion task, our guided search method is able to optimize over
random or default configurations, taking fewer evaluations than non-guided random search.

References
[1] Abdolrashidi, A., Xu, Q., Wang, S., Roy, S., and Zhou, Y. Learning to fuse. NeurIPS ML for Sys-

tems Workshop, 2019. URL http://mlforsystems.org/assets/papers/neurips2019/
learning_abdolrashidi_2019.pdf.

[2] Addanki, R., Venkatakrishnan, S. B., Gupta, S., Mao, H., and Alizadeh, M. Placeto: Learn-
ing generalizable device placement algorithms for distributed machine learning. CoRR,
abs/1906.08879, 2019. URL http://arxiv.org/abs/1906.08879.

[3] Andrew Adams, Karima Ma, L. A. R. B. T.-M. L. M. G. B. S. S. J. K. F. F. D. J. R.-K. Learning
to optimize halide with tree search and random programs. SIGGRAPH, 2019.

[4] Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Shen, H., Cowan, M., Wang, L., Hu, Y.,
Ceze, L., Guestrin, C., and Krishnamurthy, A. TVM: An Automated End-to-End Optimizing
Compiler for Deep Learning. In 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), pp. 578–594, Carlsbad, CA, October 2018. USENIX Associa-
tion. ISBN 978-1-939133-08-3. URL https://www.usenix.org/conference/osdi18/
presentation/chen.

[5] Chen, T., Zheng, L., Yan, E. Q., Jiang, Z., Moreau, T., Ceze, L., Guestrin, C., and Krishnamurthy,
A. Learning to optimize tensor programs. CoRR, abs/1805.08166, 2018. URL http://arxiv.
org/abs/1805.08166.

[6] Chen, X. and Tian, Y. Learning to perform local rewriting for combinatorial optimization.
NeurIPS, abs/1810.00337, 2019. URL http://arxiv.org/abs/1810.00337.

5

http://mlforsystems.org/assets/papers/neurips2019/learning_abdolrashidi_2019.pdf
http://mlforsystems.org/assets/papers/neurips2019/learning_abdolrashidi_2019.pdf
http://arxiv.org/abs/1906.08879
https://www.usenix.org/conference/osdi18/presentation/chen
https://www.usenix.org/conference/osdi18/presentation/chen
http://arxiv.org/abs/1805.08166
http://arxiv.org/abs/1805.08166
http://arxiv.org/abs/1810.00337

[7] Gao, Y., Chen, L., and Li, B. Spotlight: Optimizing device placement for training deep
neural networks. In Dy, J. and Krause, A. (eds.), Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research,
pp. 1676–1684, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR. URL http:
//proceedings.mlr.press/v80/gao18a.html.

[8] Google. Xla: Optimizing compiler for tensorflow. 2018. URL https://tensorflow.org/
xla.

[9] Hamilton, W., Ying, Z., and Leskovec, J. Inductive representation learning on large graphs. In
Advances in neural information processing systems, pp. 1024–1034, 2017.

[10] Jia, Z., Thomas, J., Warszawski, T., Gao, M., Zaharia, M., and Aiken, A. Optimizing DNN
Computation with Relaxed Graph Substitutions. In Proceedings of the 2nd SysML Conference,
SysML ’19, 2019.

[11] Lattner, C. and Pienaar, J. Mlir primer: A compiler infrastructure for the end of moore’s law,
2019.

[12] Mirhoseini, A., Pham, H., Le, Q. V., Steiner, B., Larsen, R., Zhou, Y., Kumar, N., Norouzi, M.,
Bengio, S., and Dean, J. Device placement optimization with reinforcement learning. ICML,
2017. URL http://arxiv.org/abs/1706.04972.

[13] Mirhoseini, A., Goldie, A., Pham, H., Steiner, B., Le, Q. V., and Dean, J. A hierarchical model
for device placement. ICLR, 2018.

[14] Paliwal, A., Gimeno, F., Nair, V., Li, Y., Lubin, M., Kohli, P., and Vinyals, O. REGAL: transfer
learning for fast optimization of computation graphs. CoRR, abs/1905.02494, 2019. URL
http://arxiv.org/abs/1905.02494.

[15] Rotem, N., Fix, J., Abdulrasool, S., Deng, S., Dzhabarov, R., Hegeman, J., Levenstein, R.,
Maher, B., Satish, N., Olesen, J., Park, J., Rakhov, A., and Smelyanskiy, M. Glow: Graph
lowering compiler techniques for neural networks. CoRR, abs/1805.00907, 2018. URL http:
//arxiv.org/abs/1805.00907.

[16] Yuu Jinnai, Arash Mehrjou, K. C. A. M. A. L. T. E. R. T. S. P. J. A. F. Knossos: Compiling ai
with ai, 2019.

[17] Zhihao Jia, Oded Padon, J. T. T. W. M. Z. A. A. Taso: optimizing deep learning computation
with automatic generation of graph substitutions. SOSP, 2019. URL https://doi.org/10.
1145/3341301.3359630.

[18] Zhou, Y., Roy, S., Abdolrashidi, A., Wong, D., Ma, P. C., Xu, Q., Liu, H., Phothilimtha, P.,
Wang, S., Goldie, A., Mirhoseini, A., and Laudon, J. Transferable graph optimizers for ml
compilers. In Advances in Neural Information Processing Systems, 2020.

6

http://proceedings.mlr.press/v80/gao18a.html
http://proceedings.mlr.press/v80/gao18a.html
https://tensorflow.org/xla
https://tensorflow.org/xla
http://arxiv.org/abs/1706.04972
http://arxiv.org/abs/1905.02494
http://arxiv.org/abs/1805.00907
http://arxiv.org/abs/1805.00907
https://doi.org/10.1145/3341301.3359630
https://doi.org/10.1145/3341301.3359630

	Introduction
	Related Work
	Method
	Experiments
	Data Collection
	Learning
	Guided Search
	Evaluation

	Conclusion

