
Published as a conference paper at ICLR 2019

THE LAPLACIAN IN RL: LEARNING REPRESENTA-
TIONS WITH EFFICIENT APPROXIMATIONS

Yifan Wu∗
Carnegie Mellon University
yw4@cs.cmu.edu

George Tucker
Google Brain
gjt@google.com

Ofir Nachum
Google Brain
ofirnachum@google.com

ABSTRACT

The smallest eigenvectors of the graph Laplacian are well-known to provide a
succinct representation of the geometry of a weighted graph. In reinforcement
learning (RL), where the weighted graph may be interpreted as the state transition
process induced by a behavior policy acting on the environment, approximating
the eigenvectors of the Laplacian provides a promising approach to state repre-
sentation learning. However, existing methods for performing this approximation
are ill-suited in general RL settings for two main reasons: First, they are compu-
tationally expensive, often requiring operations on large matrices. Second, these
methods lack adequate justification beyond simple, tabular, finite-state settings.
In this paper, we present a fully general and scalable method for approximating
the eigenvectors of the Laplacian in a model-free RL context. We systematically
evaluate our approach and empirically show that it generalizes beyond the tabular,
finite-state setting. Even in tabular, finite-state settings, its ability to approximate
the eigenvectors outperforms previous proposals. Finally, we show the potential
benefits of using a Laplacian representation learned using our method in goal-
achieving RL tasks, providing evidence that our technique can be used to signifi-
cantly improve the performance of an RL agent.

1 INTRODUCTION

The performance of machine learning methods generally depends on the choice of data representa-
tion (Bengio et al., 2013). In reinforcement learning (RL), the choice of state representation may
affect generalization (Rafols et al., 2005), exploration (Tang et al., 2017; Pathak et al., 2017), and
speed of learning (Dubey et al., 2018). As a motivating example, consider goal-achieving tasks, a
class of RL tasks which has recently received significant attention (Andrychowicz et al., 2017; Pong
et al., 2018). In such tasks, the agent’s task is to achieve a certain configuration in state space; e.g.
in Figure 1 the environment is a two-room gridworld and the agent’s task is to reach the red cell. A
natural reward choice is the negative Euclidean (L2) distance from the goal (e.g., as used in Nachum
et al. (2018)). The ability of an RL agent to quickly and successfully solve the task is thus heavily
dependent on the representation of the states used to compute the L2 distance. Computing the dis-
tance on one-hot (i.e. tabular) representations of the states (equivalent to a sparse reward) is most
closely aligned with the task’s directive. However, such a representation can be disadvantageous for
learning speed, as the agent receives the same reward signal for all non-goal cells. One may instead
choose to compute the L2 distance on (x, y) representations of the grid cells. This allows the agent
to receive a clear signal which encourages it to move to cells closer to the goal. Unfortunately, this
representation is agnostic to the environment dynamics, and in cases where the agent’s movement is
obstructed (e.g. by a wall as in Figure 1), this choice of reward is likely to cause premature conver-
gence to sub-optimal policies unless sophisticated exploration strategies are used. The ideal reward
structure would be defined on state representations whose distances roughly correspond to the ability
of the agent to reach one state from another. Although there are many suitable such representations,
in this paper, we focus on a specific approach based on the graph Laplacian, which is notable for
this and several other desirable properties.

∗Work performed while an intern at Google Brain.

1

Published as a conference paper at ICLR 2019

Figure 1: Visualization of the shaped reward defined by
the L2 distance from the red cell on an (x, y) representation
(left) and Laplacian representation (right).

For a symmetric weighted graph, the
Laplacian is a symmetric matrix with
a row and column for each ver-
tex. The d smallest eigenvectors
of the Laplacian provide an embed-
ding of each vertex in Rd which
has been found to be especially use-
ful in a variety of applications, such
as graph visualization (Koren, 2003),
clustering (Ng et al., 2002), and
more (Chung & Graham, 1997).

Naturally, the use of the Laplacian in
RL has also attracted attention. In an RL setting, the vertices of the graph are given by the states
of the environment. For a specific behavior policy, edges between states are weighted by the prob-
ability of transitioning from one state to the other (and vice-versa). Several previous works have
proposed that approximating the eigenvectors of the graph Laplacian can be useful in RL. For exam-
ple, Mahadevan (2005) shows that using the eigenvectors as basis functions can accelerate learning
with policy iteration. Machado et al. (2017a;b) show that the eigenvectors can be used to construct
options with exploratory behavior. The Laplacian eigenvectors are also a natural solution to the
aforementioned reward-shaping problem. If we use a uniformly random behavior policy, the Lapla-
cian state representations will be appropriately aware of the walls present in the gridworld and will
induce an L2 distance as shown in Figure 1(right). This choice of representation accurately reflects
the geometry of the problem, not only providing a strong learning signal at every state, but also
avoiding spurious local optima.

While the potential benefits of using Laplacian-based representations in RL are clear, current tech-
niques for approximating or learning the representations are ill-suited for model-free RL. For one,
current methods mostly require an eigendecomposition of a matrix. When this matrix is the actual
Laplacian (Mahadevan, 2005), the eigendecomposition can easily become prohibitively expensive.
Even for methods which perform the eigendecomposition on a reduced matrix (Machado et al.,
2017a;b), the eigendecomposition step may be computationally expensive, and furthermore pre-
cludes the applicability of the method to stochastic or online settings, which are common in RL.
Perhaps more crucially, the justification for many of these methods is made in the tabular setting.
The applicability of these methods to more general settings is unclear.

To resolve these limitations, we propose a computationally efficient approach to approximate the
eigenvectors of the Laplacian with function approximation based on the spectral graph drawing ob-
jective, an objective whose optimum yields the desired eigenvector representations. We present the
objective in a fully general RL setting and show how it may be stochastically optimized over mini-
batches of sampled experience. We empirically show that our method provides a better approxima-
tion to the Laplacian eigenvectors than previous proposals, especially when the raw representation is
not tabular. We then apply our representation learning procedure to reward shaping in goal-achieving
tasks, and show that our approach outperforms both sparse rewards and rewards based on L2 dis-
tance in the raw feature space. Results are shown under a set of gridworld maze environments and
difficult continuous control navigation environments.

2 BACKGROUND

We present the eigendecomposition framework in terms of general Hilbert spaces. By working with
Hilbert spaces, we provide a unified treatment of the Laplacian and our method for approximating
its eigenvectors (Cayley, 1858) – eigenfunctions in Hilbert spaces (Riesz, 1910) – regardless of the
underlying space (discrete or continuous). To simplify the exposition, the reader may substitute the
following simplified definitions:

• The state space S is a finite enumerated set {1, . . . , |S|}.
• The probability measure ρ is a probability distribution over S.
• The Hilbert spaceH is R|S|, for which elements f ∈ H are |S| dimensional vectors repre-

senting functions f : S → R.
• The inner product 〈f, g〉H of two elements f, g ∈ H is a weighted dot product of the

corresponding vectors, with weighting given by ρ; i.e. 〈f, g〉H =
∑|S|
u=1 f(u)g(u)ρ(u).

2

Published as a conference paper at ICLR 2019

• A linear operator is a mapping A : H → H corresponding to a weighted matrix multipli-
cation; i.e. Af(u) =

∑|S|
v=1 f(v)A(u, v)ρ(v).

• A self-adjoint linear operator A is one for which 〈f,Ag〉H = 〈Af, g〉H for all f, g ∈ H.
This corresponds to A being a symmetric matrix.

2.1 A SPACE AND A MEASURE

We now present the more general form of these definitions. Let S be a set, Σ be a σ-algebra, and ρ
be a measure such that (S,Σ, ρ) constitutes a measure space. Consider the set of square-integrable
real-valued functions L2(S,Σ, ρ) = {f : S → R s.t.

∫
S
|f(u)|2 dρ(u) < ∞}. When associated

with the inner-product,

〈f, g〉H =

∫
S

f(u)g(u) dρ(u),

this set of functions forms a complete inner product Hilbert space (Hilbert, 1906; Riesz, 1910). The
inner product gives rise to a notion of orthogonality: Functions f, g are orthogonal if 〈f, g〉H = 0.
It also induces a norm on the space: ||f ||2 = 〈f, f〉H. We denoteH = L2(S,Σ, ρ) and additionally
restrict ρ to be a probability measure, i.e.

∫
S

1 dρ(u) = 1.

2.2 THE LAPLACIAN

To construct the graph Laplacian in this general setting, we consider linear operators D which are
Hilbert-Schmidt integral operators (Bump, 1998), expressable as,

Df(u) =

∫
S

f(v)D(u, v) dρ(v),

where with a slight abuse of notation we also use D : S × S 7→ R+ to denote the kernel function.
We assume that (i) the kernel function D satisfies D(u, v) = D(v, u) for all u, v ∈ S so that the
operator D is self-adjoint; (ii) for each u ∈ S, D(u, v) is the Radon-Nikodym derivative (density
function) from some probability measure to ρ, i.e.

∫
S
D(u, v) dρ(v) = 1 for all u. With these

assumptions, D is a compact, self-adjoint linear operator, and hence many of the spectral properties
associated with standard symmetric matrices extend to D.

The Laplacian L of D is defined as the linear operator onH given by,

Lf(u) = f(u)−
∫
S

f(v)D(u, v) dρ(v) = f(u)−Df(u). (1)

The Laplacian may also be written as the linear operator I − D, where I is the identity operator.
Any eigenfunction with associated eigenvalue λ of the Laplacian is an eigenfunction with eigenvalue
1− λ for D, and vice-versa.

Our goal is to find the first d eigenfunctions f1, ..., fd associated with the smallest d eigenvalues of
L (subject to rotation of the basis).1 The mapping φ : S 7→ Rd defined by φ(u) = [f1(u), ..., fd(u)]
then defines an embedding or representation of the space S.

2.3 SPECTRAL GRAPH DRAWING

Spectral graph drawing (Koren, 2003) provides an optimization perspective on finding the eigenvec-
tors of the Laplacian. Suppose we have a large graph, composed of (possibly infinitely many) ver-
tices with weighted edges representing pairwise (non-negative) affinities (denoted by D(u, v) ≥ 0
for vertices u and v). To visualize the graph, we would like to embed each vertex in a low dimen-
sional space (e.g., Rd in this work) so that pairwise distances in the low dimensional space are small
for vertices with high affinity. Using our notation, the graph drawing objective is to find a set of
orthonormal functions f1, . . . , fd defined on the space S which minimize

G(f1, . . . , fd) =
1

2

∫
S

∫
S

d∑
k=1

(fk(u)− fk(v))2D(u, v) dρ(u) dρ(v) . (2)

1The existence of these eigenfunctions is formally discussed in Appendix A.

3

Published as a conference paper at ICLR 2019

The orthonormal constraints can be written as 〈fj , fk〉H = δjk for all j, k ∈ [1, d] where δjk = 1 if
j = k and δjk = 0 otherwise.

The graph drawing objective (2) may be expressed more succinctly in terms of the Laplacian:

G(f1, . . . , fd) =

d∑
k=1

〈fk, Lfk〉H. (3)

The minimum value of (3) is the sum of the d smallest eigenvalues of L. Accordingly, the minimum
is achieved when f1, . . . , fd span the same subspace as the corresponding d eigenfunctions. In the
next section, we will show that the graph drawing objective is amenable to stochastic optimization,
thus providing a general, scalable approach to approximating the eigenfunctions of the Laplacian.

3 REPRESENTATION LEARNING WITH THE LAPLACIAN

In this section, we specify the meaning of the Laplacian in the RL setting (i.e., how to set ρ,D
appropriately). We then elaborate on how to approximate the eigenfunctions of the Laplacian by
optimizing the graph drawing objective via stochastic gradient descent on sampled states and pairs
of states.

3.1 THE LAPLACIAN IN A REINFORCEMENT LEARNING SETTING

In RL, an agent interacts with an environment by observing states and acting on the environment.
We consider the standard MDP setting (Puterman, 1990). Briefly, at time t the environment produces
an observation st ∈ S, which at time t = 0 is determined by a random sample from an environment-
specific initial distribution P0. The agent’s policy produces a probability distribution over possible
actions π(a|st) from which it samples a specific action at ∈ A to act on the environment. The envi-
ronment then yields a reward rt sampled from an environment-specific reward distribution function
R(st, at), and transitions to a subsequent state st+1 sampled from an environment-specific transition
distribution function P (st, at). We consider defining the Laplacian with respect to a fixed behav-
ior policy π. Then, the transition distributions Pπ(st+1|st) form a Markov chain. We assume this
Markov chain has a unique stationary distribution.

We now introduce a choice of ρ and D for the Laplacian in the RL setting. We define ρ to be
the stationary distribution of the Markov chain Pπ such that for any measurable U ⊂ S we have
ρ(U) =

∫
S
Pπ(U |v) dρ(v).

AsD(u, v) represents the pairwise affinity between two vertices u and v on the graph, it is natural to
define D(u, v) in terms of the transition distribution.2 Recall that D needs to satisfy (i) D(u, v) =
D(v, u) (ii) D(u, ·) is the density function from a probability measure to ρ for all u. We define

D(u, v) =
1

2

dPπ(s|u)

dρ(s)

∣∣∣∣
s=v

+
1

2

dPπ(s|v)

dρ(s)

∣∣∣∣
s=u

, (4)

which satisfies these conditions3. In other words, the affinity between states u and v is the average
of the two-way transition probabilities: If S is finite then the first term in (4) is Pπ(st+1 = v|st =
u)/ρ(v) and the second term is Pπ(st+1 = u|st = v)/ρ(u).

3.2 APPROXIMATING THE LAPLACIAN EIGENFUNCTIONS

Given this definition of the Laplacian, we now aim to learn the eigen-decomposition embedding φ.
In the model-free RL context, we have access to states and pairs of states (or sequences of states)
only via sampling; i.e. we may sample states u from ρ(u) and pairs of u, v from ρ(u)Pπ(v|u). This
imposes several challenges on computing the eigendecomposition:

• Enumerating the state space S may be intractable due to the large cardinality or continuity.
• For arbitrary pairs of states (u, v), we do not have explicit access to D(u, v).
• Enforcing exact orthonormality of f1, ..., fd may be intractable in innumerable state spaces.

2The one-step transitions can be generalized to multi-step transitions in the definition of D, which provide
better performance for RL applications in our experiments. See Appendix B for details.

3D(u, v) = D(v, u) follows from definition. See Appendix B for a proof that D(u, ·) is a density.

4

Published as a conference paper at ICLR 2019

With our choices for ρ and D, the graph drawing objective (Eq. 2) is a good start for resolving these
challenges because it can be expressed as an expectation (see Appendix C for the derivation):

G(f1, . . . , fd) =
1

2
Eu∼ρ,v∼Pπ(·|u)

[d∑
k=1

(fk(u)− fk(v))2
]
. (5)

Minimizing the objective with stochastic gradient descent is straightforward by sampling transition
pairs (st, st+1) as (u, v) from the replay buffer. The difficult part is ensuring orthonormality of
the functions. To tackle this issue, we first relax the orthonormality constraint to a soft constraint∑
j,k(〈fj , fk〉H − δjk)2 < ε. Using standard properties of expectations, we rewrite the inequality

as follows:∑
j,k

(Eu∼ρ [fj(u)fk(u)]− δjk)
2

=
∑
j,k

(Eu∼ρ [fj(u)fk(u)− δjk])
2

=
∑
j,k

Eu∼ρ [fj(u)fk(u)− δjk]Ev∼ρ [fj(v)fk(v)− δjk]

=
∑
j,k

Eu∼ρ,v∼ρ [(fj(u)fk(u)− δjk) (fj(v)fk(v)− δjk)] < ε.

In practice, we transform this constraint into a penalty and solve the unconstrained minimization
problem. The resulting penalized graph drawing objective is

G̃(f1, . . . , fd) = G(f1, . . . , fd)+βEu∼ρ,v∼ρ
[∑
j,k

(fj(u)fk(u)− δjk) (fj(v)fk(v)− δjk)
]
, (6)

where β is the penalty weight (KKT multiplier).

The d-dimensional embedding φ(u) = [f1(u), ..., fd(u)] may be learned using a neural network
function approximator. We note that G̃ has a form which appears in many other representation
learning objectives, being comprised of an attractive and a repulsive term. The attractive term min-
imizes the squared distance of embeddings of randomly sampled transitions experienced by the
policy π, while the repulsive term repels the embeddings of states independently sampled from ρ.
The repulsive term is especially interesting and we are unaware of anything similar to it in other
representation learning objectives: It may be interpreted as orthogonalizing the embeddings of two
randomly sampled states while regularizing their norm away from zero by noticing∑

j,k

(fj(u)fk(u)− δjk) (fj(v)fk(v)− δjk) =
(
φ(u)Tφ(v)

)2 − ||φ(u)||22 − ||φ(v)||22 + d . (7)

4 RELATED WORK

One of the main contributions of our work is a principled treatment of the Laplacian in a general RL
setting. While several previous works have proposed the use of the Laplacian in RL (Mahadevan,
2005; Machado et al., 2017a), they have focused on the simple, tabular setting. In contrast, we
provide a framework for Laplacian representation learning that applies generally (i.e., when the
state space is innumerable and may only be accessed via sampling).

Our main result is showing that the graph drawing objective may be used to stochastically optimize a
representation module which approximates the Laplacian eigenfunctions. Although a large body of
work exists regarding stochastic approximation of an eigendecomposition (Cardot & Degras, 2018;
Oja, 1985), many of these approaches require storage of the entire eigendecomposition. This scales
poorly and fails to satisfy the desiderata for model-free RL – a function approximator which yields
arbitrary rows of the eigendecomposition. Some works have proposed extensions that avoid this
requirement by use of Oja’s rule (Oja, 1982). Originally defined within the Hebbian framework,
recent work has applied the rule to kernelized PCA (Xie et al., 2015), and extending it to settings
similar to ours is a potential avenue for future work. Other approaches to eigendecomposition that
may eventually prove fruitful in the RL setting include Mall et al. (2013), which proposes to scale
to large datasets by subsampling representative subgraphs, and Alzate & Suykens (2010), which
provides some techniques to extend spectral clustering to out-of-sample points.

5

Published as a conference paper at ICLR 2019

In RL, Machado et al. (2017b) propose a method to approximate the Laplacian eigenvectors with
functions approximators via an equivalence between proto-value functions (Mahadevan, 2005) and
spectral decomposition of the successor representation (Stachenfeld et al., 2014). Importantly, they
propose an approach for stochastically approximating the eigendecomposition when the state space
is large. Unfortunately, their approach is only justified in the tabular setting and, as we show in
our results below, does not generalize beyond. Moreover, their eigenvectors are based on an explicit
eigendecomposition of a constructed reduced matrix, and thus are not appropriate for online settings.

Approaches more similar to ours (Shaham et al., 2018; Pfau et al., 2018) optimize objectives sim-
ilar to Eq. 2, but handle the orthonormality constraint differently. Shaham et al. (2018) introduce
a special-purpose orthonormalizing layer, which ensures orthonormality at the mini-batch level.
Unfortunately, this does not ensure orthonormality over the entire dataset and requires large mini-
batches for stability. Furthermore, the orthonormalization process can be numerically unstable, and
in our preliminary experiments we found that TensorFlow frequently crashed due to numerical er-
rors from this sort of orthonormalization. Pfau et al. (2018) turn the problem into an unconstrained
optimization objective. However, in their chosen form, one cannot compute unbiased stochastic gra-
dients. Moreover, their approach scales quadratically in the number of embedding dimensions. Our
approach does not suffer from these issues.

Finally, we note that our work provides a convincing application of Laplacian representations on
difficult RL tasks, namely reward-shaping in continuous-control environments. Although previ-
ous works have presented interesting preliminary results, their applications were either restricted to
small discrete state spaces (Mahadevan, 2005) or focused on qualitative assessments of the learned
options (Machado et al., 2017a;b).

5 EXPERIMENTS

5.1 EVALUATING THE LEARNED REPRESENTATIONS

We first evaluate the learned representations by how well they approximate the subspace spanned by
the smallest eigenfunctions of the Laplacian. We use the following evaluation protocol: (i) Given
an embedding φ : S → Rd, we first find its principal d-dimensional orthonormal basis h1, ..., hd,
onto which we project all embeddings in order to satisfy the orthonormality constraint of the graph
drawing objective; (ii) the evaluation metric is then computed as the value of the graph drawing
objective using the projected embeddings. In this subsection, we use finite state spaces, so step (i)
can be performed by SVD.

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14

Figure 2: FourRoom Env.

We used a FourRoom gridworld environment (Figure 2). We gen-
erate a dataset of experience by randomly sampling n transitions
using a uniformly random policy with random initial state. We
compare the embedding learned by our approximate graph drawing
objective against methods proposed by Machado et al. (2017a;b).
Machado et al. (2017a) find the first d eigenvectors of the Lapla-
cian by eigen-decomposing a matrix formed by stacked transitions,
while Machado et al. (2017b) eigen-decompose a matrix formed by
stacked learned successor representations. We evaluate the methods
with three different raw state representations of the gridworld: (i)
one-hot vectors (“index”), (ii) (x, y) coordinates (“position”) and
(iii) top-down pixel representation (“image”).

We present the results of our evaluations in Figure 3. Our method outperforms the previous meth-
ods with all three raw representations. Both of the previous methods were justified in the tabular
setting, however, surprisingly, they underperform our method even with the tabular representation.
Moreover, our method performs well even when the number of training samples is small.

5.2 LAPLACIAN REPRESENTATION LEARNING FOR REWARD SHAPING

We now move on to demonstrating the power of our learned representations to improve the perfor-
mance of an RL agent. We focus on a family of tasks – goal-achieving tasks – in which the agent is
rewarded for reaching a certain state. We show that in such settings our learned representations are
well-suited for reward shaping.

6

Published as a conference paper at ICLR 2019

500 1000 2000 5000 10000 20000
Number of Samples

0

10

20

30

40

50

60

Ga
p

to
 O

pt
im

al

repr=index, d=20
graph drawing
successor
transition

500 1000 2000 5000 10000 20000
Number of Samples

0

10

20

30

40

50

Ga
p

to
 O

pt
im

al

repr=position, d=20

graph drawing
successor
transition

500 1000 2000 5000 10000 20000
Number of Samples

0

10

20

30

40

50

Ga
p

to
 O

pt
im

al

repr=image, d=20
graph drawing
successor
transition

Figure 3: Evaluation of learned representations. The x-axis shows number of transitions used
for training and y-axis shows the gap between the graph drawing objective of the learned repre-
sentations and the optimal Laplacian-based representations (lower is better). We find our method
(graph drawing) more accurately approximates the desired representations than previous methods.
See Appendix D for details and additional results.

Goal-achieving tasks and reward shaping. A goal-achieving task is defined by an environment
with transition dynamics but no reward, together with a goal vector zg ∈ Z, where Z is the goal
space. We assume that there is a known predefined function h : S → Z that maps any state s ∈ S
to a goal vector h(s) ∈ Z. The learning objective is to train a policy that controls the agent to get to
some state s such that ‖h(s)− zg‖ ≤ ε. For example the goal space may be the same as the state
space with Z = S and h(s) = s being the identity mapping, in which case the target is a state vector.
More generally the goal space can be a subspace of the state space. For example, in control tasks
a state vector may contain both position and velocity information while a goal vector may just be a
specific position. See Plappert et al. (2018) for an extensive discussion and additional examples.

A reward function needs to be defined in order to apply reinforcement learning to train an agent
that can perform a goal achieving task. Two typical ways of defining a reward function for this
family of tasks are (i) the sparse reward: rt = −1[‖h(st+1)− zg‖ > ε] as used by Andrychowicz
et al. (2017) and (ii) the shaped reward based on Euclidean distance rt = −‖h(st+1)− zg‖ as used
by Pong et al. (2018); Nachum et al. (2018). The sparse reward is consistent with what the agent is
supposed to do but may slow down learning. The shaped reward may either accelerate or hurt the
learning process depending on the whether distances in the raw feature space accurately reflect the
geometry of the environment dynamics.

Reward shaping with learned representations. We expect that distance based reward shaping
with our learned representations can speed up learning compared to sparse reward while avoiding
the bias in the raw feature space. More specifically, we define the reward based on distance in a
learned latent space. If the goal space is the same as the state space, i.e. S = Z, the reward function
can be defined as rt = −‖φ(st+1)− φ(zg)‖. If S 6= Z we propose two options: (i) The first is
to learn an embedding φ : Z → Rd of the goal space and define rt = −‖φ(h(st+1))− φ(zg)‖.
(ii) The second options is to learn an an embedding φ : S → Rd of the state space and define
rt = −

∥∥φ(st+1)− φ(h−1(zg))
∥∥, where h−1(z) is defined as picking arbitrary state s (may not be

unique) that achieves h(s) = z. We experiment with both options when S 6= Z.

5.2.1 GRIDWORLD

We experiment with the gridworld environments with (x, y) coordinates as the observation. We
evaluate on three different mazes: OneRoom, TwoRooms and HardMaze, as shown in the top row
of Figure 4. The red grids are the goals and the heatmap shows the distances from each grid to the
goal in the learned Laplacian embedding space. We can qualitatively see that the learned rewards are
well-suited to the task and appropriately reflect the environment dynamics, especially in TwoRoom
and HardMaze where the raw feature space is very ill-suited.

These representations are learned according to our method using a uniformly random behavior pol-
icy. Then we define the shaped reward as a half-half mix of the L2 distance in the learned latent space
and the sparse reward. We found this mix to be advantageous, as the L2 distance on its own does not
provide enough difference between the reward of the goal state and rewards of the states near the
goal. When the L2 distance between the representations of the goal state and adjacent states is small
the Q-function can fail to provide a significant signal to actually reach the goal state (rather than a
state that is just close to the goal). Thus, to better align the shaped reward with the task directive, we
use a half-half mix, which clearly draws a boundary between the goal state and its adjacent states
(as the sparse reward does) while retaining the structure of the distance-shaped reward. We plot the

7

Published as a conference paper at ICLR 2019

0 5000 10000 15000 20000 25000 30000
training steps

0.0

0.2

0.4

0.6

0.8

1.0

te
st

 su
cc

es
s r

at
e

OneRoom environment

sparse
l2
mix
rawmix

0 5000 10000 15000 20000 25000 30000
training steps

0.0

0.2

0.4

0.6

0.8

1.0

te
st

 su
cc

es
s r

at
e

TwoRoom environment

sparse
l2
mix
rawmix

0 5000 10000 15000 20000 25000 30000
training steps

0.6
0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

te
st

 su
cc

es
s r

at
e

HardMaze environment

sparse
l2
mix
rawmix

Figure 4: Results of reward shaping with a learned Laplacian embedding in GridWorld environ-
ments. The top row shows the L2 distance in the learned embedding space. The bottom row shows
empirical performance. Our method (mix) can reach optimal performance faster than the baselines,
especially in harder mazes. Policies are trained by DQN (Mnih et al., 2013).

learning performance of an agent trained according to this learned reward in Figure 4. All plots are
based on 5 different random seeds. We compare against (i) sparse: the sparse reward, (ii) l2: the
shaped reward based on the L2 distance in the raw (x, y) feature space, (iii) rawmix: the mixture of
(i) and (ii). Our mixture of shaped reward based on learning representations and the sparse reward
is labelled as “mix” in the plots. We observe that in the OneRoom environment all shaped reward
functions significantly outperform the sparse reward, which indicates that in goal-achieving tasks
properly shaped reward can accelerate learning of the policy, justifying our motivation of applying
learned representations for reward shaping. In TwoRoom and HardMaze environments when the
raw feature space cannot reflect an accurate distance, our Laplacian-based shaped reward learned
using the graph drawing objective (“mix”) significantly outperforms all other reward settings.

5.2.2 CONTINUOUS CONTROL

To further verify the benefit of our learned representations in reward shaping, we also experiment
with continuous control navigation tasks. These tasks are much harder to solve than the gridworld
tasks because the agent must simultaneously learn to control itself and navigate to the goal. We
use Mujoco (Todorov et al., 2012) to create 3D mazes and learn to control two types of agents,
PointMass and Ant, to navigate to a certain area in the maze, as shown in Figure 5. Unlike the
gridworld environments the (x, y) goal space is distinct from the state space, so we apply our two
introduced methods to align the spaces: (i) learning φ to only embed the (x, y) coordinates of
the state (mix) or (ii) learning φ to embed the full state (fullmix). We run experiments with both
methods. As shown in Figure 5 both “mix” and “fullmix” outperform all other methods, which
further justifies the benefits of using our learned representations for reward shaping. It is interesting
to see that both embedding the goal space and embedding the state space still provide a significant
advantage even if neither of them is a perfect solution. For goal space embedding, part of the state
vector (e.g. velocities) is ignored so the learned embedding may not be able to capture the full
structure of the environment dynamics. For state space embedding, constructing the state vector
from the goal vector makes achieving the goal more challenging since there is a larger set of states
(e.g. with different velocities) that achieve the goal but the shaped reward encourage the policy to
reach only one of them. Having a better way to align the two spaces would be an interesting future
direction.

6 CONCLUSION

We have presented an approach to learning a Laplacian-based state representation in RL settings.
Our approach is both general – being applicable to any state space regardless of cardinality – and
scalable – relying only on the ability to sample mini-batches of states and pairs of states. We
have further provided an application of our method to reward shaping in both discrete spaces and
continuous-control settings. With our scalable and general approach, many more potential appli-
cations of Laplacian-based representations are now within reach, and we encourage future work to
continue investigating this promising direction.

8

Published as a conference paper at ICLR 2019

0 100 200 300 400

0

50

100

150

200

250

PointMass

0 100 200 300 400

0

50

100

150

200

250

Ant

0 1 2 3 4

0

1

2

3

4

5

maze1

0 1 2 3 4

0

1

2

3

4

5

maze2

0.0 0.5 1.0 1.5 2.0 2.5
training steps (1e5)

0.0

0.2

0.4

0.6

0.8

1.0

te
st

 su
cc

es
s r

at
e

pointmaze1

fullmix
mix
rawmix
l2
sparse

0.0 0.5 1.0 1.5 2.0 2.5
training steps (1e5)

0.0

0.2

0.4

0.6

0.8

1.0

te
st

 su
cc

es
s r

at
e

pointmaze2

fullmix
mix
rawmix
l2
sparse

0 1 2 3 4
training steps (1e5)

0.0

0.2

0.4

0.6

0.8

1.0

te
st

 su
cc

es
s r

at
e

antmaze1

fullmix
mix
rawmix
l2
sparse

0 1 2 3 4
training steps (1e5)

0.0

0.2

0.4

0.6

0.8

1.0

te
st

 su
cc

es
s r

at
e

antmaze2

fullmix
mix
rawmix
l2
sparse

Figure 5: Results of reward shaping with a learned Laplacian embedding in continuous control en-
vironments. Our learned representations are used by the “mix” and “fullmix” variants (see text for
details), whose performance dominates that of all other methods. Policies are trained by DDPG (Lil-
licrap et al., 2015).

ACKNOWLEDGMENTS

We thank Marc Bellemare, Dale Schuurmans, and the Google Brain team for insightful comments
and discussions.

REFERENCES

Carlos Alzate and Johan AK Suykens. Multiway spectral clustering with out-of-sample extensions
through weighted kernel pca. IEEE transactions on pattern analysis and machine intelligence, 32
(2):335–347, 2010.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. In Advances in Neural Information Processing Systems, pp. 5048–5058, 2017.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828,
2013.

D. Bump. Automorphic Forms and Representations. Automorphic Forms and Representations.
Cambridge University Press, 1998. ISBN 9780521658188. URL https://books.google.
com/books?id=QQ1cr7B6XqQC.

Hervé Cardot and David Degras. Online principal component analysis in high dimension: Which
algorithm to choose? International Statistical Review, 86(1):29–50, 2018.

Arthur Cayley. A memoir on the theory of matrices. Philosophical transactions of the Royal society
of London, 148:17–37, 1858.

Fan RK Chung and Fan Chung Graham. Spectral graph theory. Number 92. American Mathematical
Soc., 1997.

Rachit Dubey, Pulkit Agrawal, Deepak Pathak, Thomas L Griffiths, and Alexei A Efros. Investigat-
ing human priors for playing video games. ICML, 2018.

David Hilbert. Grundzüge einer allgemeinen theorie der linearen integralgleichungen. vierte mit-
teilung. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-
Physikalische Klasse, 1906:157–228, 1906.

Yehuda Koren. On spectral graph drawing. In International Computing and Combinatorics Confer-
ence, pp. 496–508. Springer, 2003.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

9

https://books.google.com/books?id=QQ1cr7B6XqQC
https://books.google.com/books?id=QQ1cr7B6XqQC

Published as a conference paper at ICLR 2019

Marlos C Machado, Marc G Bellemare, and Michael Bowling. A laplacian framework for option
discovery in reinforcement learning. arXiv preprint arXiv:1703.00956, 2017a.

Marlos C Machado, Clemens Rosenbaum, Xiaoxiao Guo, Miao Liu, Gerald Tesauro, and Murray
Campbell. Eigenoption discovery through the deep successor representation. arXiv preprint
arXiv:1710.11089, 2017b.

Sridhar Mahadevan. Proto-value functions: Developmental reinforcement learning. In Proceedings
of the 22nd international conference on Machine learning, pp. 553–560. ACM, 2005.

Raghvendra Mall, Rocco Langone, and Johan AK Suykens. Kernel spectral clustering for big data
networks. Entropy, 15(5):1567–1586, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Ofir Nachum, Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical reinforcement
learning. arXiv preprint arXiv:1805.08296, 2018.

Andrew Y Ng, Michael I Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm.
In Advances in neural information processing systems, pp. 849–856, 2002.

Erkki Oja. Simplified neuron model as a principal component analyzer. Journal of mathematical
biology, 15(3):267–273, 1982.

Erkki Oja. On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a
random matrix. 1985.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International Conference on Machine Learning (ICML), volume
2017, 2017.

David Pfau, Stig Petersen, Ashish Agarwal, David Barrett, and Kim Stachenfeld. Spectral inference
networks: Unifying spectral methods with deep learning. arXiv preprint arXiv:1806.02215, 2018.

Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker, Glenn Pow-
ell, Jonas Schneider, Josh Tobin, Maciek Chociej, Peter Welinder, et al. Multi-goal reinforce-
ment learning: Challenging robotics environments and request for research. arXiv preprint
arXiv:1802.09464, 2018.

Vitchyr Pong, Shixiang Gu, Murtaza Dalal, and Sergey Levine. Temporal difference models: Model-
free deep rl for model-based control. arXiv preprint arXiv:1802.09081, 2018.

Martin L Puterman. Markov decision processes. Handbooks in operations research and management
science, 2:331–434, 1990.

Eddie J Rafols, Mark B Ring, Richard S Sutton, and Brian Tanner. Using predictive representations
to improve generalization in reinforcement learning. In IJCAI, pp. 835–840, 2005.

Friedrich Riesz. Untersuchungen über systeme integrierbarer funktionen. Mathematische Annalen,
69(4):449–497, 1910.

Uri Shaham, Kelly Stanton, Henry Li, Boaz Nadler, Ronen Basri, and Yuval Kluger. Spectralnet:
Spectral clustering using deep neural networks. arXiv preprint arXiv:1801.01587, 2018.

Kimberly L Stachenfeld, Matthew Botvinick, and Samuel J Gershman. Design principles of the
hippocampal cognitive map. In Advances in neural information processing systems, pp. 2528–
2536, 2014.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan, John Schul-
man, Filip DeTurck, and Pieter Abbeel. # exploration: A study of count-based exploration for
deep reinforcement learning. In Advances in Neural Information Processing Systems, pp. 2753–
2762, 2017.

10

Published as a conference paper at ICLR 2019

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pp. 5026–
5033. IEEE, 2012.

Bo Xie, Yingyu Liang, and Le Song. Scale up nonlinear component analysis with doubly stochastic
gradients. In Advances in Neural Information Processing Systems, pp. 2341–2349, 2015.

11

Published as a conference paper at ICLR 2019

A EXISTENCE OF SMALLEST EIGENVALUES OF THE LAPLACIAN.

Since the Hilbert space H may have infinitely many dimensions we need to make sure that the
smallest d eigenvalues of the Laplacian operator is well defined. Since L = I − D if λ is an
eigenvalue of D then 1− λ is an eigenvalue of L. So we turn to discuss the existence of the largest
d eigenvalues of D. According to our definition D is a compact self-adjoint linear operator on H.
So it has the following properties according to the spectral theorem:

• D has either (i) a finite set of eigenvalues or (ii) countably many eigenvalues {λ1, λ2, ...}
and λn → 0 if there are infinitely many. All eigenvalues are real.

• Any eigenvalue λ satisfies −‖D‖ ≤ λ ≤ ‖D‖ where ‖·‖ is the operator norm.

If the operator D has a finite set of n eigenvalues its largest d eigenvalues exist when d is smaller
than n.

If D has a infinite but countable set of eigenvalues we first characterize what the eigenvalues look
like:

Let f1 be f1(u) = 1 for all u ∈ S. Then Df1(u) =
∫
f1(v)D(u, v) dρ(v) =

∫
D(u, v) dρ(v) = 1

for all u ∈ S thus Df1 = f1. So λ = 1 is an eigenvalue of D.

Recall that the operator norm is defined as

‖D‖ = inf {c ≥ 0 : ‖Df‖ ≤ c ‖f‖ ∀f ∈ H} .

Define qu be the probability measure such that dqu
dρ = D(u, ·). We have

Df(u)2 = Ev∼qu [f(v)]2 ≤ Ev∼qu [f(v)2] =

∫
f(v)2D(u, v) dρ(v)

and

‖Df‖2 =

∫
Df(u)2 dρ(u) ≤

∫ ∫
f(v)2D(u, v) dρ(v) dρ(u) =

∫
f(v)2 dρ(v) = ‖f‖2 ,

which hold for any f ∈ H. Hence ‖D‖ ≤ 1.

So the absolute values of the eigenvalues of D can be written as a non-increasing sequence which
converges to 0 with the largest eigenvalue to be 1. If d is smaller than the number of positive
eigenvalues of D then the largest d eigenvalues are guaranteed to exist. Note that this condition
for d is stricter than the condition when D has finitely many eigenvalues. We conjecture that this
restriction is due to an artifact of the analysis and in practice using any value of d would be valid
whenH has infinite dimensions.

B DEFINING D FOR MULTI-STEP TRANSITIONS

To introduce a more general definition of D, we first introduce a generalized discounted transition
distribution Pπλ defined by

Pπλ (v|u) =

∞∑
τ=1

(λτ−1 − λτ)Pπ(st+τ = v|st = u) , (8)

where λ ∈ [0, 1) is a discount factor, with λ = 0 corresponding to the one-step transition distribution
Pπ0 = Pπ . Notice that Pπλ (v|u) can be also written as Pπλ (v|u) = Eτ∼qλ [Pπ(st+τ = v|st = u)]
where qλ(τ) = λτ−1 − λτ . So sampling from Pπλ (v|u) can be done by first sampling τ ∼ qλ then
rolling out the Markov chain for τ steps starting from u.

Note that for readability we state the definition of Pπλ in terms of discrete probability distributions
but in general Pπλ (·|u) are defined as a probability measure by stating the discounted sum (8) for
any measurable set of states U ∈ Σ, U ⊂ S instead of a single state v.

Also notice that when λ > 0 sampling v from Pπλ (v|u) required rolling out more than one steps
from u (and can be arbitrarily long). Given that the replay buffer contains finite length (say T ′)

12

Published as a conference paper at ICLR 2019

trajectories sampling exactly from the defined distribution is impossible. In practice, after sampling
u = st in a trajectory and τ from qλ(τ) we discard this sample if t+ τ > T ′.

With the discounted transition, distributions now the generalized D is defined as

D(u, v) =
1

2

dPπλ (s|u)

dρ(s)

∣∣∣∣
s=v

+
1

2

dPπλ (s|v)

dρ(s)

∣∣∣∣
s=u

. (9)

We assume that Pπλ (·|u) is absolutely continuous to ρ for any u so that the Radon Nikodym deriva-
tives are well defined. This assumption is mild since it is saying that for any state v that is reachable
from some state u under Pπ we have a positive probability to sample it from ρ, i.e. the behavior
policy π is able to explore the whole state space (not necessarily efficiently).

Proof of D(u, ·) being a density of some probability measure with respect to ρ. We need to
show that

∫
S
D(u, v) dρ(v) = 1. Let f(·|u) be the density function of Pπλ (·|u) with respect to ρ

then D(u, v) = 1
2f(v|u)+ 1

2f(u|v). According to the definition of f we have
∫
S
f(v|u) dρ(v) = 1.

It remains to show that
∫
S
f(u|v) dρ(v) = 1 for any u.

First notice that if ρ is the stationary distribution of Pπ it is also the stationary distribution of Pπλ
such that ρ(U) =

∫
S
Pπ(U |v) dρ(v) for any measurable U ⊂ S. Let g(u) =

∫
S
f(u|v) dρ(v). For

any measurable set U ⊂ S we have

∫
U

g(u) dρ(u) =

∫
u∈U

∫
v∈S

f(u|v) dρ(v) dρ(u)

=

∫
v∈S

∫
u∈U

f(u|v) dρ(u) dρ(v)

=

∫
v∈S

Pπλ (U |v) dρ(v)

= ρ(U) , (Property of the stationary distribution.)

which means that g is the density function of ρ with respect to ρ. So g(u) = 1 holds for all u. (For
simplicity we ignore the statement of “almost surely” throughout the paper.)

Discussion of finite time horizon. Because provingD(u, ·) to be a density requires the fact that ρ is
the stationary distribution of Pπ , the astute reader may suspect that sampling from the replay buffer
will differ from the stationary distribution when the initial state distribution is highly concentrated,
the mixing rate is slow, and the time horizon is short. In this case, one can adjust the definition of
the transition probabilities to better reflect what is happening in practice: Define a new transition
distribution by adding a small probability to “reset”: P̃π(·|u) = (1 − δ)Pπ(·|u) + δP0. This
introduces a randomized termination to approximate termination of trajectories (e.g,. due to time
limit) without adding dependencies on t (to retain the Markov property). Then, ρ and D can be
defined in the same way with respect to P̃π . Now the replay buffer can be viewed as rolling out a
single long trajectory with P̃π so that sampling from the replay buffer approximates sampling from
the stationary distribution. Note that under the new definition of D, minimizing the graph drawing
objective requires sampling state pairs that may span over the “reset” transition. In practice, we
ignore these pairs as we do not want to view “resets” as edges in RL. When δ (e.g. 1/T) is small,
the chance of sampling these “reset” pairs is very small, so our adjusted definition still approximately
reflects what is being done in practice.

13

Published as a conference paper at ICLR 2019

C DERIVATION OF (5)

G(f1, . . . , fd) =
1

2

∫
S

∫
S

d∑
k=1

(fk(u)− fk(v))2D(u, v) dρ(u) dρ(v)

=
1

4

∫
S

∫
S

d∑
k=1

(fk(u)− fk(v))2 dPπλ (v|u) dρ(u)

+
1

4

∫
S

∫
S

d∑
k=1

(fk(u)− fk(v))2 dPπλ (u|v) dρ(v)

(Switching the notation u and v in the second term gives the same quantity as the first term)

=
1

2

∫
S

∫
S

d∑
k=1

(fk(u)− fk(v))2 dPπλ (v|u) dρ(u)

=
1

2
Eu∼ρ,v∼Pπ(·|u)

[
d∑
k=1

(fk(u)− fk(v))2

]
.

D ADDITIONAL RESULTS AND EXPERIMENT DETAILS

D.1 EVALUATING THE LEARNED REPRESENTATIONS

Environment details. The FourRoom gridworld environment, as shown in Figure 2, has 152 dis-
crete states and 4 actions. A tabular (index) state representation is a one hot vector with 152 dimen-
sions. A position state representation is a two dimensional vector representing the (x, y) coordinates,
scaled within [−1, 1]. A image state representation contains 15 by 15 RGB pixels with different col-
ors representing the agent, walls and open ground. The transitions are deterministic. Each episode
starts from a uniformly sampled state has a length of 50. We use this data to perform representation
learning and evaluate the final learned representation using our evaluation protocol.

Implementation of baselines. Both of the approaches in Machado et al. (2017a) and Machado et al.
(2017b) output d eigenoptions e1, ..., ed ∈ Rm where m is the dimension of a state feature space
ψ : S → Rm, which can be either the raw representation (Machado et al., 2017a) or a representa-
tion learned by a forward prediction model (Machado et al., 2017b). Given the d eigenoptions, an
embedding can be obtained by letting fi(s) = ψ(s)T ei. Following their theoretical results it can
be seen that if ψ is the one-hot representation of the tabular states and the stacked rows contains
unique enumeration of all transitions/states φ = [f1, ..., fd] spans the same subspace as the smallest
d eigenvectors of the Laplacian.

Additional results. Additional results for d = 50, 100 are shown in Figure 6.

Choice of β in (6). When the optimization problem associated with our objective (6) may be solved
exactly, increasing β will always lead to better approximations of the exact graph drawing objective
(2) as the soft constraint approaches to the hard constraint. However, the optimization problem
becomes harder to be solve by SGD when the value of β is too large. We perform an sensitivity
study over β to show this trade-off in Figure 7. We can see that the optimal value of β increases as
d in creases.

Hyperparameters. D is defined using one-step transitions (λ = 0 in (9)). We use β = d/20, batch
size 32, Adam optimizer with learning rate 0.001 and total training steps 100, 000. For represen-
tation mappings: we use a linear mapping for index states, a 200 → 200 two hidden layer fully
connected neural network for position states and a convolutional network for image states. All ac-
tivation functions are relu. The convolutional network contains 3 conv-layers with output channels
(16, 16, 16), kernel sizes (4, 4, 4), strides (2, 2, 1) and a final linear mapping to representations.

14

Published as a conference paper at ICLR 2019

500 1000 2000 5000 10000 20000
Number of Samples

0

20

40

60

80

Ga
p

to
 O

pt
im

al

repr=index, d=50
graph drawing
successor
transition

500 1000 2000 5000 10000 20000
Number of Samples

20

40

60

80

100

Ga
p

to
 O

pt
im

al

repr=position, d=50

graph drawing
successor
transition

500 1000 2000 5000 10000 20000
Number of Samples

0

20

40

60

80

Ga
p

to
 O

pt
im

al

repr=image, d=50

graph drawing
successor
transition

500 1000 2000 5000 10000 20000
Number of Samples

0

20

40

60

80

100

Ga
p

to
 O

pt
im

al

repr=index, d=100
graph drawing
successor
transition

500 1000 2000 5000 10000 20000
Number of Samples

40

60

80

100

Ga
p

to
 O

pt
im

al

repr=position, d=100

graph drawing
successor
transition

500 1000 2000 5000 10000 20000
Number of Samples

20

40

60

80

100

Ga
p

to
 O

pt
im

al

repr=image, d=100
graph drawing
successor
transition

Figure 6: Evaluation of learned representations for d = 50, 100.

0 2 4 6 8 10
beta

2

4

6

8

10

12

14

Ga
p

to
 O

pt
im

al

d=20

0 2 4 6 8 10
beta

10

15

20

25

30

35

40

45

Ga
p

to
 O

pt
im

al

d=50

0 2 4 6 8 10
beta

35

40

45

50

55

Ga
p

to
 O

pt
im

al

d=100

Figure 7: Ablation study for the value of β. We use n = 2000 and repr = position.

D.2 LAPLACIAN REPRESENTATION LEARNING FOR REWARD SHAPING

D.2.1 GRIDWORLD

Environment details All mazes have a total size of 15 by 15 grids, with 4 actions and total number
of states decided by the walls. We use (x, y) position as raw state representations. Since the states
are discrete the success criteria is set as reaching the exact grid. Each episode has a length of 50.

Hyperparameters For representation learning we use d = 20. In the definition of D we use the
discounted multi-step transitions (9) with λ = 0.9. For the approximate graph drawing objective
(6) we use β = 5.0 and δjk = 0.05 (instead of 1) if j = k otherwise 0 to control the scale of L2
distances. We pretrain the representations for 30000 steps (This number of steps is not optimized
and we observe that the training converges much earlier) by Adam with batch size 128 and learning
rate 0.001. For policy training, we use the vanilla DQN (Mnih et al., 2013) with a online network
and a target network both representing the Q-function. The policy used for testing is to select the
action with the highest Q-value according to the online network at each state. The online network
is trained to minimize the Bellman error by sampling transitions from the replay buffer. The target
network is updated every 50 steps with a mixing rate of 0.05 (of the current online network with
0.95 of the previous target network). Epsilon greedy with ε = 0.2 is used for exploration. Reward
discount is 0.98. The policy is trained with Adam optimizer with learning rate 0.001. For both
representation mapping and Q-functions we use a fully connected network (parameter not shared)
with 3 hidden layers and 256 units in each layer. All activation functions are relu.

D.2.2 CONTINUOUS CONTROL

Environment details The PointMass agent has a 6 dimensional state space a 2 dimensional action
space. The Ant agent has a 29 dimensional state space and a 8 dimensional action space. The success
criteria is set as reaching an L2 ball centered around a specific (x, y) position with the radius as 10%
of the total size of the maze, as shown in Figure 5. Each episode has a length of 300.

15

Published as a conference paper at ICLR 2019

Hyperparameters For representation learning we use d = 20. In the definition of D we use the
discounted multi-step transitions (9) with λ = 0.99 for PointMass and λ = 0.999 for Ant. For
the approximate graph drawing objective (6) we use β = 2.0 and δjk = 0.1 (instead of 1) if
j = k otherwise 0 to control the scale of L2 distances. We pretrain the representations for 50000
steps by Adam with batch size 128 and learning rate 0.001 for PointMass and 0.0001 for Ant. For
policy training, we use the vanilla DDPG (Lillicrap et al., 2015) with a online network and a target
network. Each network contains two sub-networks: an actor network representing the policy and
a critic network representing the Q-function. The online critic network is trained to minimize the
Bellman error and the online actor network is trained to maximize the Q-value achieved by the
policy. The target network is updated every 1 step with a mixing rate of 0.001. For exploration we
follow the Ornstein-Uhlenbeck process as described in the original DDPG paper (Lillicrap et al.,
2015). Reward discount is 0.995. The policy is trained with Adam optimizer with batch size 100,
actor learning rate 0.0001 and critic learning rate 0.001 for PointMass and 0.0001 for Ant. For
representation mapping we use a fully connected network (parameter not shared) with 3 hidden
layers and 256 units in each layer. Both actor network and critic network have 2 hidden layers with
units (400, 300). All activation functions are relu.

0.0 0.5 1.0 1.5 2.0 2.5
training steps (1e5)

0.0

0.2

0.4

0.6

0.8

1.0

te
st

 su
cc

es
s r

at
e

pointmaze1

online
mix

0.0 0.5 1.0 1.5 2.0 2.5
training steps (1e5)

0.0

0.2

0.4

0.6

0.8

1.0

te
st

 su
cc

es
s r

at
e

pointmaze2

online
mix

0 1 2 3 4
training steps (1e5)

0.0

0.2

0.4

0.6

0.8

1.0

te
st

 su
cc

es
s r

at
e

antmaze1

online
mix

0 1 2 3 4
training steps (1e5)

0.0

0.2

0.4

0.6

0.8

1.0

te
st

 su
cc

es
s r

at
e

antmaze2

online
mix

Figure 8: Results of reward shaping with pretrained-then-fixed v.s. online-learned representations.

Online learning of representations We also present results of learning the representations online
instead of pretraining-and-fix and observe equivalent performance, as shown in Figure 8, suggesting
that our method may be successfully used in online settings. For online training the agent moves
faster in the maze during policy learning so we anneal the λ in D from its inital value to 0.95
towards the end of training with linear decay. The reason that online training provides no benefit
is that our randomized starting position setting enables efficient exploration even with just random
walk policies. Investigating the benefit of online training in exploration-hard tasks would be an
interesting future direction.

16

	Introduction
	Background
	A Space and a Measure
	The Laplacian
	Spectral Graph Drawing

	Representation Learning with the Laplacian
	The Laplacian in a Reinforcement Learning Setting
	Approximating the Laplacian Eigenfunctions

	Related Work
	Experiments
	Evaluating the Learned Representations
	Laplacian Representation Learning for Reward Shaping
	GridWorld
	Continuous Control

	Conclusion
	Existence of smallest eigenvalues of the Laplacian.
	Defining D for Multi-step Transitions
	Derivation of (5)
	Additional results and experiment details
	Evaluating the Learned Representations
	Laplacian Representation Learning for Reward Shaping
	GridWorld
	Continuous Control

