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Abstract

A major challenge in understanding the gen-
eralization of deep learning is to explain why
(stochastic) gradient descent can exploit the
network architecture to find solutions that
have good generalization performance when
using high capacity models. We find sim-
ple but realistic examples showing that this
phenomenon exists even when learning lin-
ear classifiers — between two linear networks
with the same capacity, the one with a convo-
lutional layer can generalize better than the
other when the data distribution has some
underlying spatial structure. We argue that
this difference results from a combination of
the convolution architecture, data distribu-
tion and gradient descent, all of which are
necessary to be included in a meaningful
analysis. We analyze of the generalization
performance as a function of data distribu-
tion and convolutional filter size, given gra-
dient descent as the optimization algorithm,
then interpret the results using concrete ex-
amples. Experimental results show that our
analysis is able to explain what happens in
our introduced examples.

1 Introduction

It has been shown that the capacities of successful deep
neural networks are typically large enough such that
they can fit random labelling of the inputs in a dataset
(Zhang et al., 2016). Hence an important problem
is to understand why gradient descent (and its vari-
ants) is able to find the solutions that generalize well
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on unseen data. Another key factor, besides gradi-
ent descent, in achieving good generalization perfor-
mance in deep neural networks is architecture design
with weight sharing (e.g. Convolutional Neural Net-
works (CNNs) (LeCun et al., 1998) and Long Short
Term Memories (LSTMs) (Hochreiter and Schmidhu-
ber, 1997) ). To the best of our knowledge, none of
the existing work on analyzing the generalization bias
of gradient descent takes these specific architectures
into formal analysis. One may conjecture that the ad-
vantage of weight sharing is caused by reducing the
network capacity compared with using fully connected
layers without talking about gradient descent. How-
ever, as we will show later, there is a joint effect be-
tween network architectures and gradient descent on
the generalization performance even if the model ca-
pacity remains unchanged. In this work we try to ana-
lyze the generalization bias of two layer CNNs together
with gradient descent, as one of the initial steps to-
wards understanding the generalization performance
of deep learning in practice.

CNNs have proven to be successful in learning tasks
where the data distribution has some underlying spa-
tial structure such as image classification (Krizhevsky
et al., 2012; He et al., 2016), Atari games (Mnih et al.,
2013) and Go (Silver et al., 2017). A common view
of how CNNs work is that convolutional filters extract
high level features while pooling exploits spatial trans-
lation invariance (Goodfellow et al., 2016). Pooling,
however, is not always used, especially in reinforce-
ment learning (RL) tasks (see the networks used in
Atari games (Mnih et al., 2013), and Go (Silver et al.,
2017)) even if exploiting some level of spatial invari-
ance is desired for good generalization. For example,
if we are training a robot arm to pick up an apple from
a table, one thing we are expecting is that the robot
learns to move its arm to the left if the apple is on its
left and vice versa. If we use a policy network to decide
“left” or “right”, we expect the network to be able to
generalize without being trained with all of the pixel
level combinations of the (arm, apple) location pair. In
order to see whether stacking up convolutional filters
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and fully connected layers without pooling can still ex-
ploit the spatial invariance in the data distribution, we
design the following tasks, which are the simplified 1-
D version of 2-D image based classification and control
tasks:

• Binary classification (Task-Cls): Suppose we
are trying to classify object A v.s. B given a 1-D
d-pixel “image” as input. We assume that only one
of the two objects appears on each image and the
object occupies exactly one pixel. In pixel level in-
puts x ∈ {−1, 0,+1}d, we use +1 to represent object
A, −1 for object B and 0 for nothing. We use label
y = +1 for object A and y = −1 for object B. The
resulting dataset looks as follows:

x = [0, ......, 0,−1, 0, ..., 0]→ y = −1 ;

x = [0, ..., 0,+1, 0, ......, 0]→ y = +1 .

The entire possible dataset contains 2d samples.

• First-person vision-based control (Task-
1stCtrl): Suppose we are doing first-person view
control in 3-D environments with visual images as
input, e.g. robot navigation, and the task is to go
to the proximity of object A. One decision the robot
has to make is to turn left if the object is on the left
half of the image and turn right if it is on the right
half. We consider the simplified 1-D version, where
each input x ∈ {0, 1}d contains only one non-zero
element xi = 1 with y = −1 if the object is on the
left half (i ≤ d/2) and y = +1 if the object is on the
right half (i > d/2). The resulting dataset looks as
follows:

x = [0, ...1.., 0, ......, 0]→ y = −1 ;

x = [0, ......, 0, ...1.., 0]→ y = +1 .

The entire possible dataset contains d samples.

• Third-person vision-based control (Task-
3rdCtrl): We consider the fixed third-person view
control, e.g. controlling a robot arm, and the task
is to control the agent (arm), denoted by object B
and represented by −1, to touch the target object
A, represented by +1, in the scene. Again we want
to move the arm B to the left (y = −1) if A is on the
left of B and move it to the right (y = +1) if A is
on the right. The resulting dataset looks as follows:

x = [0, ...+ 1....− 1....., 0]→ y = −1 ;

x = [0, ......− 1...+ 1..., 0]→ y = +1 .

The entire possible dataset contains d(d − 1) sam-
ples.

Although all of the three tasks we described above have
a finite number of samples in the whole dataset we still

... ...
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Figure 1: Left: ŷ = sign
(
wTx

)
— Model-1-Layer.

Right: ŷ = sign
(
wT2 Conv(w1, x)

)
— Model-Conv-k.

seek good generalization performance on these tasks
when learning from only a subset of them. We do not
want the learner to see almost all possible pixel-wise
appearance of the objects before it is able to perform
well. Otherwise the sample complexity will be huge
when the resolution of the image becomes higher and
the number of objects involved in the task grows larger.

One key property of all these three tasks we designed
is that the data distribution is linearly separable even
without introducing the bias term. That is, for each
of the tasks, there exist at least one w ∈ Rd such
that y = sign

(
wTx

)
for all (x, y) in the whole dataset.

This property gives superior convenience in both ex-
periment control and theoretical analysis, while several
important aspects , as we will explain later in this sec-
tion, in analyzing the generalization of deep networks
are still preserved: The linear separator w for a train-
ing set is not unique and the interesting question is
why different algorithms (architecture plus optimiza-
tion routine) can find solutions that generalize better
or worse on unseen samples.

Since the data distribution is linearly separable the
immediate learning algorithm one would try on these
tasks is to train a single layer linear classifier using lo-
gistic regression, SVM, etc. However, this seems to be
not exploiting the spatial structure of the data distri-
bution and we are interested in seeing whether adding
convolutional layers could help. More specifically, we
consider adding a convolution layer between the input
x and the output layer, where the convolution layer
contains only one size-k filter (output channel = 1)
with stride = 1 and without non-linear activation func-
tions. Figure 1 shows the two models we are compar-
ing. We also experimented with the fully-connected
two layer linear classifier where the first layer has
weight matrix W1 ∈ Rd×d without non-linear activa-
tion. This model has the same generalization behavior
as a single-layer linear classifier in all of our exper-
iments so we will not show these results separately.
This phenomenon, however, may also exhibit an inter-
esting problem to study.

It is worth noting that Model-1-Layer and Model-
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(a) Task-Cls
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Figure 2: Comparing the generalization performance
between single layer and two layer convolutional linear
classifiers with different sizes of training data. Train-
ing samples are uniformly sampled from the whole
dataset (d = 100) with replacement. The models are
trained by minimizing the hinge loss (1− yf(x))+ us-
ing full-batch gradient descent. Training stops when
training reaches 0. Trained models are then evalu-
ated on the whole dataset (including the training sam-
ples). For convolution layer we use a single size-5 filter
with stride 1 and padding with 0. Each plotted point
is based on repeating the same configuration for 100
times.

Conv-k represent exactly the same set of functions.
That is, for any w in Model-1-Layer we are able to find
(w1, w2) in Model-Conv-k such that they represent the
same function, and vice versa. Therefore, both of the
two models have the same capacity and any difference
in the generalization performance cannot be explained
by the difference of capacity. We compare the general-
ization performance of the two models in Figure 1 on
all of the three tasks we have introduced. As shown
in Figure 2, Model-Conv-k outperforms Model-1-Layer
on all of the three tasks. The rest of our paper is mo-
tivated by explaining the generalization behavior of
Model-Conv-k.

Explaining our empirical observations requires a gen-
eralization analysis that depends on data distribution,
convolution structure and gradient descent. Any of
these three factors cannot be isolated from the analy-
sis for the following reasons:

• Data distribution: If we randomly flip the label
for each data point independently then all models
will have the same generalize performance on unseen
samples.

• Convolution structure: The network structure is
the main factor that we are trying to analyze. We

further argue that we should explain the advantage
of convolution and not just depth. This is because,
as we mentioned earlier, adding a fully connected
layer does not provide any advantage compared with
a single-layer model in all of our experiments.

• Gradient descent: The analysis should also in-
clude the optimization algorithm since the function
classes represented by the two models we are com-
paring are equivalent. For example, the Model-
Conv-k can be optimized in the way that we first
find a solution w by optimizing Model-1-Layer then
let w1 = [1, 0, ..., 0] and w2 = w, which also gives
a solution for Model-Conv-k but has no generaliza-
tion advantage. Therefore, analyzing how gradient
descent is able to exploit the convolution structure
is necessary to explain the generalization advantage
in our experiments.

In this paper we provide a data dependent analysis on
the generalization performance of two layer convolu-
tional linear classifiers given gradient descent as the
optimizer. In Section 3 we first give a general analysis
then interpret our results using specific examples. In
Section 4 we empirically verify that our analysis is able
to explain the observations in our experiments in Fig-
ure 2. Due to space constraints, proofs are relegated
to the appendix.

Our main contribution can be highlighted as follows:
(i) We design simple but realistic examples that are
theory-friendly while preserving important challenges
in understanding what is happening in practice. (ii)
We are the first to provide a formal generalization
analysis that considers the interaction among data dis-
tribution, convolution, and gradient descent, which
is necessary to provide meaningful understanding for
deep networks. (iii) We derive a closed form weight dy-
namics under gradient descent with a modified hinge
loss and relate the generalization performance to the
first singular vector pair of some matrix computed
from the training samples. (iv) We interpret the re-
sults with one of our concrete examples using Perron-
Frobenius Theorem for non-negative matrices, which
shows how much sample complexity we can save by
adding a convolution layer. (v) Our result reveals an
interesting difference between the generalization bias
of ConvNet and that of traditional regularizations —
The bias itself requires some training samples to be
built up. (vi) Our experiments show that our analy-
sis is able to explain what happens in our examples.
More specifically, we show that the performance under
our modified hinge loss is strongly correlated with the
performance under the real hinge loss.
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2 Preliminaries

2.1 Learning Binary Classifiers

We consider learning binary classifiers ŷ = sign (fw(x))
with a function class f parameterized by w, in order
to predict the real label y ∈ {−1,+1} given an input
x ∈ Rd. A random label is predicted with equal chance
if fw(x) = 0. In a single layer linear classifier (Model-
1-Layer) we have w ∈ Rd and fw(x) = wTx. In the
two layer convolutional linear classifiers (Model-Conv-
k) we have w = (w1, w2) where the convolution filter
w1 ∈ Rk and the output layer w2 ∈ Rd (k ≤ d). fw
can be written as fw(x) =

∑d
i=1 w2,i

∑k
j=1 w1,jxi+j−1

where every term whose index is out of range is treated
as zero.

We denote the entire data distribution as D, which one
can sample data points (x, y)s from. We say drawing
a training set D ∼ D when we independently sample
n = |D| data points from D with replacement and take
the collection as D. For finite datasets, e.g. in the
tasks we introduced, we assume the data distribution
is uniform over all data points. In this paper we only
consider the case where there is no noise in the label,
i.e. the true label y is always deterministic given an
input x, so that we can write (x, y) ∈ D or x ∈ D
interchangeably.

Given a training set Dtr ∼ D with ntr samples and
a model fw, we learn the classifier by minimizing the
empirical hinge loss L(w;Dtr) = 1

ntr

∑
(x,y)∈Dtr

(1 −
yfw(x))+ using full-batch gradient descent with learn-
ing rate α > 0:

wt+1 = wt − α∇wL(wt;Dtr)

= wt +
α

ntr

∑
(x,y)∈Dtr

I {yfwt(x) < 1} y∇wfwt(x) .

Given a classifier fw and data distribution D, the gen-
eralization error can be written as

E(w;D) = ED [Eŷ [I {ŷ 6= y}]]

= ED
[
I {yfw(x) < 0}+

1

2
I {yfw(x) = 0}

]
= ED

[
Ē(yfw(x))

]
, (1)

where we define function Ē : R 7→ {0, 12 , 1} as Ē(x) =
I {x < 0}+ 1

2 I {x = 0} which is non-increasing and sat-
isfies Ē(αx) = Ē(x) for any α > 0.

2.2 An Alternative Form for Two Layer
ConvNets

For the convenience of analysis, we use an alterna-
tive form to express Model-Conv-k. Let Ax ∈ Rd×k

Ax:

x
x

x
x

k

d
......

Figure 3: Matrix Ax ∈ Rd×k given x ∈ Rd.

be [x, x←1 , ..., x←k−1
], where k is the size of the filter

and x←l
is defined as the input vector left-shifted by

l positions: x←l,i = xi+l (pad with 0 if out of range).
Then fw(x) can be written as fw(x) = wT1 A

T
xw2. The

definition of Ax is visualized in Figure 3.

Further define Mx,y = yAx then we have
yfw(x) = wT1 M

T
x,yw2. We can write the empirical loss

as L(w;Dtr) = 1
ntr

∑
(x,y)∈Dtr

(1 − wT1 M
T
x,yw2)+

and the generalization error as E(w;D) =
E(x,y)∼D

[
Ē
(
wT1 M

T
x,yw2

)]
.

3 Theoretical Analysis

In this section we analyze the generalization behavior
of Model-Conv-k when training with gradient descent.
We introduce a modified version of the hinge loss which
enables a closed-form expression for the weight dy-
namics . Based on the closed-form we show that the
weights converge to some specific directions as t→∞.
Plugging the asymptotic weights back to the general-
ization error gives the observation that the generaliza-
tion performance depends on the first singular vector
pair of the average Mx,y over the training samples. We
interpret our result under Task-Cls, which shows that
our analysis is well aligned with the empirical observa-
tions and quantifies how much (≈ 2k−1 times) sample
complexity can be saved by adding a convolution layer.

3.1 The Extreme Hinge Loss (X-Hinge)

We consider minimizing a linear variant of the hinge
loss `(w;x, y) = −yfw(x). We call it the extreme
hinge loss because the gradient of this loss is the
same as the gradient of the hinge loss `(w;x, y) =
(1 − yfw(x))+ when yfw(x) < 1. Then the training
loss becomes L(w;Dtr) = −wT1 MT

trw2 where we define
Mtr = 1

ntr

∑
(x,y)∈DMx,y ∈ Rd×k. Note that minimiz-

ing this loss will lead to L → −∞. However, since
the normal hinge loss can be viewed as a fit-then-stop
version of X-hinge, considering loss L → −∞ in our
cases gives interesting insights about the generaliza-
tion bias of Conv-k under the normal hinge loss. In
the next section we will further verify the correlation
between X-hinge and the normal hinge loss through
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experiments, which can be summarized as follows:

(i) Under X-hinge (w1, w2) converges to a limit direc-
tion which brings superior generalization advantage.
(ii) Conv-k generalizes better under normal hinge be-
cause the weights tend to converge to this limit direc-
tion (but stopped when training loss reaches 0). (iii)
The variance (due to different initialization) in the
generalization performance of Conv-k comes from how
close the weights are to this limit direction when train-
ing stops.

3.2 An Asymptotic Analysis

The full-batch gradient descent update for minimizing
X-hinge with learning rate α is wt+1

1 = wt1 + αMT
trw

t
2

and wt+1
2 = wt2 + αMtrw

t
1. For the simplicity of writ-

ing our analysis we let w0
2 = 0, which does not affect

our theoretical conclusion. Now we try to analyze the
generalization error when t→∞. (See Appendix for a
finite-time closed form expression of wt.) First we will
show that the weight converge to a specific direction
as t→∞ given fixed w0

1:

Lemma 1. For any training set Dtr let Mtr = UΣV T

be (any of) its SVD and σ1 ≥ σ2 ≥ ... ≥ σk ≥ 0 be the
diagonal of Σ with σ1 > 0.1 Denote 1 ≤ m ≤ k be the
largest number such that σ1 = σm, then we have

w∞1
.
= lim
t→+∞

2wt1
(1 + ασ1)t

= V:mV
T
:mw

0
1 ,

w∞2
.
= lim
t→+∞

2wt2
(1 + ασ1)t

= U:mV
T
:mw

0
1 , (2)

where A:m denotes the first m columns of a matrix A.

Let w∞ = (w∞1 , w
∞
2 ) be a random

variable that depends on (Dtr, w
0
1) and

F∞(x, y, w0
1, Dtr)

.
= yfw∞(x) = w∞1

TMT
x,yw

∞
2 =

w0
1
T
V:mV

T
:mM

T
x,yU:mV

T
:mw

0
1. We define the asymptotic

generalization error for Model-Conv-k with gradient
descent on data distribution D as 2

E∞Convk(D)
.
= EDtr,w0

1
[E(w∞,D)]

= Ew0
1,Dtr,(x,y)

[
Ē
(
F∞(x, y, w0

1, Dtr)
)]
.

(3)

One can further remove the dependence on w0
1 when

using Gaussian initialization:

Theorem 2. Consider training Model-Conv-k by gra-
dient descent with initialization w0

1 ∼ N (0, b2Ik)

1We implicitly assume that the data distribution D sat-
isfies Pr (Mtr = 0) = 0 for any ntr > 0, which is true in all
of our examples.

2Note that E(w∞,D) = limt→∞ E(wt,D) may not hold
due to the discontinuity of I {·}.

for some b > 0 and w0
2 = 0. Let UVM1 de-

note the set of left-right singular vector pairs cor-
responding to the largest singular value σ1 for a
given matrix M . The asymptotic generalization er-
ror in (3) can be upper bounded by E∞Convk(D) ≤
EDtr,(x,y)

[
Ē
(

min
(u,v)∈UVMtr

1
vTMT

x,yu
)]

.

When the first singular vector pair of Mtr is unique
(which is always true when ntr is not too small in our
experiments), denoted by (u, v), we have m = 1 and
Lemma 1 says that wt1 converges to the same direction
as v while wt2 converges to the same direction as u. In
this case Theorem 2 holds with equality and we can
remove the min operator . The asymptotic generaliza-
tion performance is characterized by how many data
points in the whole dataset can be correctly classified
by Model-Conv-k with the first singular vector pair of
Mtr as its weights. Later on we will show that this
quantity is highly correlated with the real generaliza-
tion performance in practice where we use the original
hinge loss but not the extreme one.

3.3 Interpreting the Result with Task-Cls

We will use our previously introduced task Task-Cls to
show that the quantity in Theorem 2 is non-vacuous: it
saves approximately 2k− 1 times samples over Model-
1-Layer in Task-Cls.

3.3.1 Decomposing the generalization error

Notation. For any l ∈ [d] = {1, ..., d} define el ∈
{0, 1}d to be the vector that has 1 in its l-th position
and 0 elsewhere. Then the set of inputs x in Task-Cls
is the set of el and −el for all l. Note that in Task-Cls
y(−x) = −y(x) and M−x,−y = Mx,y so each pair of data
points el and −el can be treated equivalently during
training and test. Thus we can think of sampling from
D as sampling from the d positions. Let U [d] denote
the uniform distribution over [d]. Given a training set
Dtr define Str = {l ∈ [d] : el ∈ Dtr ∨−el ∈ Dtr} to be
the set of non-zero positions that appear in Dtr.

To analyze the quantity in Theorem 2 we notice that
all elements in Mtr are non-negative for any Dtr. By
applying the Perron-Frobenius theorem (Frobenius,
1912) which characterizes the spectral property for
non-negative matrices we can further decompose it
into two parts. We first introduce the following defini-
tion3:

Definition 3. Let A ∈ Rk×k be a non-negative square
matrix. A is primitive if there exists a positive integer
t such that Atij > 0 for all i, j.

3See appendix for what a primitive matrix looks like
and what it indicates.
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Now we are ready to state the following theorem:

Theorem 4. Let Ω(A) be the event that A is prim-
itive and Ωc(A) be its complement. Consider train-
ing Model-Conv-k with gradient descent on Task-Cls.
The asymptotic generalization error defined in (3) can
be upper bounded by E∞Convk ≤ Pr

(
Ωc(MT

trMtr)
)

+
1
2El∼U [d] [Pr (∀l′ ∈ Str, |l′ − l| ≥ k)].

The message delivered by Theorem 4 is that the upper
bound of the asymptotic generalization error depends
on whether MT

trMtr is primitive and (if yes) how much
of the whole dataset is covered by the k-neighborhoods
of the points in the training set. Next we will discuss
the two quantities in Theorem 4 separately.

First consider the second term. Let Xtr =
{x1, x2, ..., xn} be the collection of xs in the train-
ing set Dtr with ntr = n and Ltr = {l1, l2, ..., ln}
be the corresponding non-zero positions of Xtr,
which are i.i.d. samples from U [d]. Therefore
Pr (∀l′ ∈ Str, |l′ − l| ≥ k) = Pr (

⋂n
i=1 |li − l| ≥ k) =(

d−k−min{k,l,d−l+1}+1
d

)n
. The second quantity now

can be exactly calculated by averaging over all l ∈ [d].
To get a cleaner form that is independent of l, we can
either further upper bound it by

(
d−k
d

)n
or approxi-

mate it by
(
d−2k+1

d

)n
if k � d.

Now come back to the first quantity , which is the
probability that MT

trMtr is not primitive. Exactly cal-
culating or even tightly upper bounding this quan-
tity seems hard so we derive a sufficient condition for
MT

trMtr to be primitive so that the probability of its
complement can be used to upper bound the probabil-
ity that MT

trMtr is not primitive:

Lemma 5. Let Ω̃tr be the event that there exists k ≤
i ≤ d such that both i− 1, i ∈ Str. If Ω̃tr happens then
MT

trMtr is primitive.

Lemma 5 says that MT
trMtr is primitive if there ex-

ist two training samples with adjacent non-zero posi-
tions and the positions should be after k due to shift-
ing/padding issues. Thus we have Pr

(
Ωc(MT

trMtr)
)
≤

Pr
(

Ω̃ctr

)
. Calculating the quantity Pr

(
Ω̃ctr

)
which is

the probability that no adjacent non-zero positions af-
ter k appear in a randomly sampled training set with
size n, however, is still hard so we empirically esti-

mate Pr
(

Ω̃ctr

)
. Figure 4(a) shows that Pr

(
Ω̃ctr

)
has

a lower order than the quantity
(
d−2k+1

d

)n
as n goes

larger so the second term in Theorem 4 becomes dom-
inating in the generalization bound. We give a rough
intuition about this: let sn be the expected number
of unique samples when we uniformly draw n samples
from 1, ..., d, then sn → d as n → ∞. The avail-
able slots for the n + 1-th sample not creating adja-
cent pairs is at most d − sn. So the total probabil-

ity of not having adjacent pairs can be roughly upper
bounded by

∏n
i=1

d−sn
d . Taking the ratio to

(
d−2k+1

d

)n
gives

∏n
i=1

d−sn
d−2k+1 , which goes to zero as n→∞ and

sn → d.
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Figure 4: Visualizing the calculated/estimated
generalization errors. Err 1 denotes the esti-

mate of Pr
(

Ω̃ctr

)
, Err 2 denotes 1

2

(
d−2k+1

d

)n
and

Err one Layer denotes 1
2

(
d−1
d

)n
, where we set d =

100, k = 5, and each estimate for Pr
(

Ω̃ctr

)
is based

on repeatedly sampling n points from U [d] for 10,000
times.

3.3.2 Comparing with Model-1-Layer

We compare the second term of Theorem 4, which
is approximately 1

2

(
d−2k+1

d

)n
, with the generalization

error of Model-1-Layer. Assume all elements in the
single layer weights are initialized independently with
some distribution centering around 0. In each step of
gradient descent wi is updated only if x = ±ei is in
the training set. So for any (x, y) in the whole dataset,
it is guaranteed to be correctly classified only if ±ei
appears in the training set, otherwise it has only a half
chance to be correctly classified due to random initial-
ization. Then the generalization error can be written
as E1Layer = 1

2El∼U [d] [Pr (∀l′ ∈ Str, l
′ 6= l)] = 1

2

(
d−1
d

)n
The two error rates are the same when k = 1, which
is expected, and 1

2

(
d−2k+1

d

)n
is smaller when k > 1.

To see how much we save on the sample complex-
ity by using Model-Conv-k to achieve a certain er-
ror rate ε we let 1

2

(
d−2k+1

d

)n
= ε, which gives n =

1
log d−log(d−2k+1) log 1

2ε and limd→∞
n
d = 1

2k−1 log 1
2ε .

So the sample complexity for using Model-Conv-k is
approximately d

2k−1 log 1
2ε when k � d while we need

d log 1
2ε samples for Model-1-Layer. Model-Conv-k re-

quires approximately 2k−1 times fewer samples when
k � d and ε is small enough such that the first part
in Theorem 4 is negligible.

Now take the first term in Theorem 4 into considera-
tion by adding up the empirically estimated Pr

(
Ω̃ctr

)
and 1

2

(
d−2k+1

d

)n
as an upper bound for E∞Convk then

compare the sum with E1Layer. Figure 4(b) shows that
the estimated upper bound for E∞Conv5 is clearly smaller
than E1Layer when n is not too small. This difference
is well aligned with our empirical observation in Fig-
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ure 2(a) where the two models perform similarly when
n is small and Model-Conv-k outperforms Model-1-
Layer when n grows larger.

Theorem 4 and Lemma 5 show that when there ex-
ist l, l′ ∈ Str such that |l − l′| = 1 then the training
samples in Dtr generalize to their k-neighbors. We ar-
gue that this generalization bias itself requires some
samples to be built up, which means that achieving k-
neighbors generalization requires some condition hold
for Str. Having l, l′ ∈ Str such that |l − l′| = 1 is a
sufficient condition but not a requirement. Now we
derive a necessary condition for this generalization ad-
vantage:

Proposition 6. If for all l ∈ Str we have l ≥ k and for
any l, l′ ∈ Str we have |l− l′| ≥ 2k then this k-neighbor
generalization does not hold for Conv-k in Task-Cls.
Actually, under this condition and w0

1 ∼ N (0, b2I),
there is no generalization advantage for Model-Conv-k
compared to Model-1-Layer.

Proposition 6 states that when the training samples
are too sparse Model-Conv-k provides the same gen-
eralization performance as Model-1-Layer. Together
with Theorem 4 and Lemma 5 our results reveal a
very interesting fact that, unlike traditional regulariza-
tion techniques, the generalization bias here requires a
certain amount of training samples before saving the
sample complexity effectively.

4 Experiments

In this section we empirically investigate the relation-
ship between our analysis and the actual performance
in experiments (Figure 2). Recall that we made two
major surrogates during our analysis: (i) We consider
the extreme hinge loss `(w;x, y) = −yfw(x) instead
of the typically used `(w;x, y) = (1 − yfw(x))+. (ii)
We consider the asymptotic weights w∞ instead of wt.
Now we study the difference caused by these surro-
gates. We compare the following three quantities: (a)
the empirical estimate for the asymptotic error E∞Convk

using Theorem 2 by computing SVD of sampled Mtrs,
(b) the test errors by training with the extreme hinge
loss and (c) the real hinge loss. 4 The results are
shown in Figure 5.

It can be seen from Figure 5 that there is not much dif-
ference between the estimated quantity in Theorem 2
by SVD and the actual test error by training with the
extreme hinge loss `(w;x, y) = −yfw(x), which verifies
our derivation in Section 3. It is also shown that, es-
pecially in Task-Cls and Task-1stCtrl, the asymptotic
quantity can be viewed as an upper confidence bound

4We also tried cross entropy loss with sigmoid and found
no much difference from using the hinge loss.
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Figure 5: Comparing estimated asymptotic error
(Asym) v.s. finite time extreme hinge loss (X-hinge)
v.s. normal hinge loss (Normal) with different sizes
of training data. For using normal hinge loss training
stops when training loss goes to 0 while for extreme
hinge loss we train the model for 1000 steps. The other
settings remain the same as the experiments shown in
Figure 2.

for the actual performance with the normal hinge loss.
The asymptotic quantity has a much lower variance
which only comes from the randomization of the train-
ing set so the high variance with the normal hinge loss
is caused by random initialization and good initializa-
tions would perform closer to the asymptotic quantity
than the bad ones. To verify this, we fix the train-
ing set and compare the performance of the two losses
at each training step t with difference initial weights
w0. Figure 6(a) 5 shows the convergence of train-
ing/test accuracies with difference losses. With the
normal hinge loss, the test performance remains the
same once the training loss reaches 0. With the ex-
treme hinge loss, the test performance is still changing
even after the training data is fitted and eventually
converges to E∞Convk. As we can see, there is a differ-
ence in how fast the direction of weight wt converges
(in terms of test accuracy) to its limit w∞ defined in
Lemma 1 with different initialization when using the
extreme hinge loss. We further argue that this variance
is strongly correlated with the variance in the gener-
alization performance under the normal hinge loss, as
shown in Figure 6(b), from which we can see how well
a model trained using the normal hinge loss with some
w0 generalizes depends on how fast wt converges to its
limit direction using the extreme hinge loss.

One may wonder that whether X-hinge always gen-
eralizes better than the normal hinge under gradient

5Results for the other two tasks are put in the appendix.
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Figure 6: The effect of weight initialization in Task-
Cls. We fix d = 100, n = 30 and train Model-Conv-5
with 100 different random initializations using both
losses. w0 is uniformly sampled from [−b, b]d+k.

descent as in Task-Cls. However, this is not true in
Task-3rdCtrl, where the limit direction is better when
ntr is small but worse when ntr is large, according to
Figure 5(c). The reason is that the limit direction w∞

may not be able to separate the training set6. This
indicates that the potential generalization “benefit”
from the convolution layer may actually be a bias.

5 Related Work

Among all recent attempts that try to explain the be-
havior of deep networks our work is distinct in the
sense that we study the generalization performance
that involves the interaction between gradient descent
and convolution. For example, Du et al. (2017) study
how gradient descent learns convolutional filters but
they focus on optimization instead of generalization.
Several recent works study the generalization bias of
gradient descent (Hardt et al., 2015; Dziugaite and
Roy, 2017; Brutzkus et al., 2017; Soudry et al., 2017)
but they are not able to explain the advantage of con-
volution in our examples. Hardt et al. (2015) bounds
the stability of stochastic gradient descent within lim-
ited number of training steps. Dziugaite and Roy
(2017) proposes a non-vacuous bound that relies on
the stochasticity of the learning process. Neither lim-
ited number of training steps or stochasticity is nec-
essary to achieve better generalization in our exam-
ples. Similarly to our work, Soudry et al. (2017) study
the convergence of w/ ‖w‖2 under gradient descent.
However, their work is limited to single layer logistic
regression and their result shows that the linear sepa-
rator converges to the max-margin one, which does
not indicate good generalization in our cases. Gu-
nasekar et al. (2018) also study the limit directions of
multi-layer linear convolutional classifiers under gra-
dient descent. Their result is not directly applicable
to ours since they consider loopy convolutional filters
with full width k = d while we consider filters with
k � d and padding with 0. Our setting of filters is
closer to what people use in practice. Moreover, Gu-

6See appendix for an example.

nasekar et al. (2018) does not provide any generaliza-
tion analysis while we show that the limit direction
of the convolutional linear classifier provides signifi-
cant generalization advantage on some specific tasks.
Brutzkus et al. (2017) shows that optimizing an over-
parametrized 2-layer network with SGD can generalize
on linearly separable data. Their work is limited to
only training the first fully connected layer while we
study jointly training two layers with convolution. An-
other thread of work (Bartlett et al., 2017; Neyshabur
et al., 2017b,a) tries to develop novel complexity mea-
sures that are able to characterize the generalization
performance in practice. These complexities are based
on the margin, norm or the sharpness of the learned
model on the training samples. Taking Task-Cls as an
example, the linear classifier with the maximum mar-
gin or minimum norm will place 0 on the weights where
there are no training samples, which is undesirable in
our case, while the sharpness of the learned model in
terms of training loss contains no information about
how it behaves on unseen samples. So none of these
measures can be applied to our scenario. (Fukumizu,
1999; Saxe et al., 2013; Pasa and Sperduti, 2014; Ad-
vani and Saxe, 2017) study the dynamics of linear net-
work but these results do not apply in our case due to
difference loss and network architecture: (Fukumizu,
1999; Saxe et al., 2013; Advani and Saxe, 2017) study
fully connected networks with L2 regression loss while
Pasa and Sperduti (2014) considers recurrent networks
with reconstruction loss.

6 Conclusion

We analyze the generalization performance of two layer
convolutional linear classifiers trained with gradient
descent. Our analysis is able to explain why, on some
simple but realistic examples, adding a convolution
layer can be more favorable than just using a single
layer classifier even if the data is linearly separable.
Our work can be a starting point for several interest-
ing future direction: (i) Closing the gaps in normal
hinge loss v.s. the extreme one as well as asymptotic
analysis v.s. finite time analysis. The latter may be
able to characterize how good a weight initialization
is. (ii) Another interesting question is how we can in-
terpret the generalization bias as a prior knowledge.
We conjecture that the jointly trained filter works as
a data adaptive bias as it requires a certain amount of
data to provide the generalization bias (supported by
Proposition 6. (iii) Other interesting directions include
studying the choice of k, making practical suggestions
based on our analysis and bringing in more factors
such as feature extraction, non-linearity and pooling.
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A Proof of Lemma 1

We first introduce the following Lemma, which shows
that wt1 and wt2 can be written in closed-forms in terms
of (w0

1, w
0
2,Mtr, α, t):

Lemma 7. Let Mtr = UΣV T be (any of) its SVD
such that U ∈ Rd×k,Σ ∈ Rk×k, V ∈ Rk×k, UTU =
V TV = V V T = I. Then for any t ≥ 0

wt1 =
1

2
V
(
Λ+,tV Tw0

1 + Λ−,tUTw0
2

)
,

wt2 =
1

2
U
(
Λ−,tV Tw0

1 + Λ+,tUTw0
2

)
− UUTw0

2 + w0
2 .

(4)

where we define Λ+,t = (I + αΣ)t + (I − αΣ)t and
Λ−,t = (I + αΣ)t − (I − αΣ)t.

Proof. We start with stating the following facts for
Λ+,t and Λ−,t:

Λ+,0 = 2I, Λ−,0 = 0 and for any t ≥ 0

Λ+,t+1 = Λ+,t + αΣΛ−,t ,

Λ−,t+1 = Λ−,t + αΣΛ+,t .

Now we prove (4) by induction. When t = 0, w0
1 =

V V Tw0
1 and w0

2 = UUTw0
2−UUTw0

2 +w0
2 so (4) holds

for t = 0. Assume Lemma (4) holds for t then consider
the next step t+ 1:

wt+1
1 = wt1 + αMT

trw
t
2

=
1

2
V
(
Λ+,tV Tw0

1 + Λ−,tUTw0
2

)
+ αV ΣUT

(
1

2
U
(
Λ−,tV Tw0

1 + Λ+,tUTw0
2

)
−UUTw0

2 + w0
2

)
=

1

2
V
(
Λ+,tV Tw0

1 + Λ−,tUTw0
2

+αΣΛ−,tV Tw0
1 + αΣΛ+,tUTw0

2

)
=

1

2
V
(
Λ+,t+1V Tw0

1 + Λ−,t+1UTw0
2

)
.

Similarly, we can show

wt+1
2 = wt2 + αMtrw

t
1

=
1

2
U
(
Λ−,t+1V Tw0

1 + Λ+,t+1UTw0
2

)
− UUTw0

2 + w0
2 .

Thus (4) holds for all t ≥ 0.

Proof of Lemma 1. Taking w0
2 = 0 in Lemma 7 we can

write wt1 = 1
2V Λ+,tV Tw0

1 and wt2 = 1
2UΛ−,tV Tw0

1

For 1 ≤ i ≤ m, σi = σ1 thus

lim
t→+∞

(1 + ασi)
t

(1 + ασ1)t
= 1 . (5)

For m < i ≤ k, σi < σ1 thus

lim
t→+∞

(1 + ασi)
t

(1 + ασ1)t
= 0 . (6)

For any 1 ≤ i ≤ k, we have 1−ασi

1+ασ1
≤ 1

1+ασ1
< 1 and

1−ασi

1+ασ1
≥ 1−ασ1

1+ασ1
= −1 + 2

1+ασ1
> −1 thus

lim
t→+∞

(1− ασi)t

(1 + ασ1)t
= 0 . (7)

Applying (5)—(7) to compute the limits in (2) gives
the result in Lemma 1.

B Proof of Theorem 2

Proof. For any vector z ∈ Rm such that ‖z‖2 = 1, we
have

MtrV:mz = UΣV TV:mz = σ1U:mz ,

MT
trU:mz = V ΣUTU:mz = σ1V:mz ,

Since

‖V:mz‖22 = zTV T:mV:mz = 1 ,

‖U:mz‖22 = zTUT:mU:mz = 1

we know that (U:mz, V:mz) is also a pair of left-right
singular vectors with singular value σ1. Therefore,

when V T:mw
0
1 ∈ Rm is non-zero

(
U:mV

T
:mw

0
1

‖V T
:mw

0
1‖2

,
V:mV

T
:mw

0
1

‖V T
:mw

0
1‖2

)
is also such a pair. Following (3) we have

F∞(x, y, w0
1, Dtr)

‖V T:mw0
1‖

2
2

=

(
V:mV

T
:mw

0
1

‖V T:mw0
1‖2

)T
MT
x,y

(
U:mV

T
:mw

0
1

‖V T:mw0
1‖2

)
≥ min

(u,v)∈UVMtr
1

vTMT
x,yu (8)

for any w0
1 such that V T:mw

0
1 6= ~0.

When w0
1 ∼ N (0, b2Ik), for any fixed V:m satisfying

V T:mV:m = Im, the random variable V T:mw
0
1 also follows

a normal distribution:

E
[
V T:mw

0
1(V T:mw

0
1)T
]

= V T:mE
[
w0

1w
0
1
T
]
V:m = b2Im

hence V T:mw
0
1 ∼ N (0, b2Im).

Applying the fact that Ē(·) ≤ 1 is non-increasing and
Ē(αx) = Ē(x) for any α > 0 we can upper bound (3)
by

E∞Convk(D)
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= Ew0
1,Dtr,(x,y)

[
Ē
(
F∞(x, y, w0

1, Dtr)
)]

= EDtr,(x,y)

[
Ew0

1

[
Ē
(
F∞(x, y, w0

1, Dtr)
)]]

= EDtr,(x,y)

[
Pr
(
V T:mw

0
1 = ~0

)
Ew0

1

[
Ē (F∞)

∣∣V T:mw0
1 = ~0

]
+ Pr

(
V T:mw

0
1 6= ~0

)
Ew0

1

[
Ē (F∞)

∣∣V T:mw0
1 6= ~0

]]
= EDtr,(x,y)

[
Ew0

1

[
Ē

(
F∞

‖V T:mw0
1‖

2
2

)∣∣V T:mw0
1 6= ~0

]]

≤ EDtr,(x,y)

[
Ē

(
min

(u,v)∈UVMtr
1

vTMT
x,yu

)]
.

C Perron-Frobenius Theorem

Let A ∈ Rk×k be a non-negative square matrix7:

• Definition: A is primitive if there exists a positive
integer t such that Atij > 0 for all i, j.

• Definition: A is irreducible if for any i, j there ex-
ists a positive integer t such that Atij > 0.

• Definition: Its associated graph GA = (V,E) is de-
fined to be a directed graph with V = {1, ..., k} and
(i, j) ∈ E iff Aij 6= 0. GA is said to be strongly
connected if for any i, j there is path from i to j.

• Property: A is irreducible iff GA is strongly con-
nected.

• Property: If A is irreducible and has at least one
non-zero diagonal element then A is primitive.

• Property: If A is primitive then its first eigenvalue
is unique (λ1 > λ2) and the corresponding eigenvec-
tor is all-positive (or all-negative up to sign flipping).

D Proof of Theorem 4

Proof. Following (3) and let

Ê(x, y,Dtr) = Ē

(
min

(u,v)∈UVMtr
1

vTMT
x,yu

)
≤ 1

we have

E∞Convk(D) ≤ EDtr,(x,y)

[
Ê(x, y,Dtr)

]
= EDtr,(x,y)

[(
I
{

Ωc(MT
trMtr)

}
+ I
{

Ω(MT
trMtr)

})
Ê(x, y,Dtr)

]
≤ EDtr

[
I
{

Ωc(MT
trMtr)

}]
+ EDtr,(x,y)

[
I
{

Ω(MT
trMtr)

}
Ê(x, y,Dtr)

]
7https://en.wikipedia.org/wiki/

Perron-Frobenius_theorem .

= Pr
(
Ωc(MT

trMtr)
)

+ EDtr,l∼U [d]

[
I
{

Ω(MT
trMtr)

}
Ê(el, 1, Dtr)

]
(9)

Now look at the second term in (9). If MT
trMtr is

primitive then its first eigenvalue λ1 = σ2
1 is unique

(σ1 > σ2) and the corresponding eigenvector v is all
positive (or all negative if we flip the sign of v and u,
which does not change the sign of vTMTu thus it is
safe to assume v > 0). u = Mtrv/σ1 gives that u is
also unique and non-negative. Since Mx,y is also non-
negative we have vTMT

x,yu ≥ 0 for any x, y. Therefore,

Ê(x, y,Dtr) = Ē
(
vTMT

x,yu
)

= I
{
vTMT

x,yu < 0
}

+
1

2
I
{
vTMT

x,yu = 0
}

=
1

2
I
{
vTMT

x,yu = 0
}
.

From u = Mtrv/σ1 and v > 0 we know that ui > 0 iff
there exists 1 ≤ j ≤ k such that (Mtr)i,j > 0, which
is equivalent to that there exists i ≤ l < i + k such
that l ∈ Str. Also for x = el (y = 1), according to
the definition of Mx,y and the fact that v > 0 we have
vTMT

el,1
u > 0 iff there exists l − k < i ≤ l such that

ui > 0. So we have

vTMT
el,1

u > 0 ⇐⇒ ∃l′ ∈
⋃

l−k<i≤l

[i, i+ k) s.t. l′ ∈ Str

Since vTMT
el,1

u ≥ 0 and
⋃
l−k<i≤l[i, i+k) = (l−k, l+k)

we have

vTMT
el,1

u = 0 ⇐⇒ ∀l′ ∈ Str, |l′ − l| ≥ k .

Now we have proved that, if MT
trMtr is primitive then

Ê(el, 1, Dtr) =
1

2
I {∀l′ ∈ Str, |l′ − l| ≥ k} ,

which means that

I
{

Ω(MT
trMtr)

}
Ê(el, 1, Dtr) ≤

1

2
I {∀l′ ∈ Str, |l′ − l| ≥ k}

holds for any Dtr. Therefore

EDtr,l∼U [d]

[
I
{

Ω(MT
trMtr)

}
Ê(el, 1, Dtr)

]
≤ 1

2
EDtr,l∼U [d] [I {∀l′ ∈ Str, |l′ − l| ≥ k}]

=
1

2
El∼U [d] [Pr (∀l′ ∈ Str, |l′ − l| ≥ k)]

which concludes the proof.

E Proof of Lemma 5

Proof. If k ≤ i ≤ d and i− 1, i ∈ Str then for any 1 ≤
j ≤ k we have (Mtr)i−j,j > 0 and (Mtr)i−j+1,j > 0,

https://en.wikipedia.org/wiki/Perron-Frobenius_theorem
https://en.wikipedia.org/wiki/Perron-Frobenius_theorem
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which also means that for any 1 ≤ j < k we have
(Mtr)i−j,j > 0 and (Mtr)i−j,j+1 > 0. Since every
two adjacent columns have at least one common non-
zero position what we have is (MT

trMtr)j,j+1 > 0 and
(MT

trMtr)j+1,j > 0 for all 1 ≤ j < k. So its associ-
ated graph GMT

trMtr
is strongly connected thus MT

trMtr

is irreducible. It is also true that all diagonal ele-
ments of MT

trMtr are positive since every column of
Mtr must contain at least one non-zero element. Now
we have proved that MT

trMtr is primitive because it is
irreducible and has at least one non-zero element on
its diagonal.

F Proof of Proposition 6

Proof. Let n = |Str|. Then given the conditions in
this proposition we can see that any column in Mtr

has exactly n non-zero entries with value 1/n and any
two columns in Mtr has no overlapping non-zero posi-
tions. Hence we have MT

trMtr = 1
nIk so that m = k in

Lemma 1 and V V T = I. Applying Lemma 1 we have
w∞1 = w0

1 and w∞2 = nMtrw
0
1. Then for any x = el we

have

yfw∞(x) = w∞1
TMT

x,yw
∞
2 = nw0

1
T
ATxMtrw

0
1 .

For x to be correctly classified we need yfw∞(x) > 0.
We will show that this is guaranteed only when l ∈ Str,
i.e. x or −x ∈ Dtr.

Since for any l, l′ ∈ Str, |l − l′| ≥ 2k we know that
there exist at most one l′ ∈ Str such that |l − l′| < k.

If there does not exist such l′ then ATxMtr = 0 and
yfw∞(x) = 0, which means x is classified randomly.

If there exists a unique l′ such that |l− l′| < k and let
s = |l − l′|, we have that

yfw∞(x) = nw0
1
T
ATxMtrw

0
1 =

k−s∑
i=1

w0
1,iw

0
1,i+s .

When l ∈ Str, which means s = 0, we have yfw∞(x) =

w0
1
T
w0

1 > 0 when w0
1 6= 0 (which holds almost surely).

When 0 < s < k it is not guaranteed that∑k−s
i=1 w

0
1,iw

0
1,i+s > 0 under w0

1 ∼ N (0, b2I). Actu-
ally we can show that the distribution of this quan-
tity is symmetric around 0: For any s we can draw
a graph with k nodes and every (i, i + s) forms an
edge. This graph contains s independent chains so we
can choose a set of nodes S ⊂ [k] such that for any
edge exactly one of the two nodes is contained in S.
Now for any w0

1 if we flip the sign at the positions

that belong to S then the sign of
∑k−s
i=1 w

0
1,iw

0
1,i+s is

also flipped. With w0
1 ∼ N (0, b2I) this indicates that

P (
∑k−s
i=1 w

0
1,iw

0
1,i+s > 0) = 1/2.

Now we have shown that, under the condition in this
proposition, a data sample is correctly classified by
Conv-k with w∞ if and only if this sample appears in
the training set. Otherwise it has only a half change to
be correctly classified. This generalization behavior is
exactly the same as Model-1-Layer in Task-Cls, which
concludes the proof.

G A Supporting Evidence for
Interpreting Conv-Filters as a Data
Adaptive Bias

We have shown that, different from typical regulariza-
tions, the bias itself may require some samples to be
built up (see Figure 4(b)). We conjecture that convo-
lution layer adds a data adaptive bias: The set of pos-
sible filters forms a set of biases. With a few number
of samples gradient descent is able to figure out which
bias(filter) is more suitable for the dataset. Then the
identified bias can play as a prior knowledge to reduce
the sample complexity. We provide another evidence
for this: Let the dataset contains all el, l ∈ [d] while
yel = +1 if l is odd and −1 is l is even. Model-Conv-k
is still able to outperform Model-1-Layer on this task
(see Figure 7). We observe that the sign of the learned
filter looks like (+, -, +, -, ...) in contrast to the ones
learned in our three tasks, which are likely to be all
positive or all negative. This indicates that, besides
spatial shifting invariance, jointly training the convo-
lutional filter can exploit a broader set of structures
and be adaptive to different data distributions.
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Figure 7: Classifying even v.s. odd non-zero position.
Settings are the same as in Figure 2.

H Correlation Between Normal-hinge
and X-hinge under Different
Initializations

Figure 8 and 9 shows the variance introduced by
weight initialization is also strongly correlated under
two losses in Task-1stCtrl and Task-3rdCtrl. Fig-
ure 9(a) looks a bit different from the other two tasks
because the extreme hinge loss is biased and w∞ may
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not able to separate the training samples in Task-
3rdCtrl. But the strong correlation between the nor-
mal hinge loss and the extreme hinge loss under dif-
ferent weight initializations still holds.
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(b) Correlation at t = 150.

Figure 8: The effect of weight initialization in Task-
1stCtrl. We fix d = 100, n = 30 and train Model-
Conv-k with 100 different random initializations using
both losses.
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Figure 9: The effect of weight initialization in Task-
3stCtrl. We fix d = 100, n = 50 and train Model-
Conv-k with 100 different random initializations using
both losses.

I The bias of X-Hinge in Task-3rdCtrl
and Potential Practical Indications

In Figure 9(a) we observe that running gradient de-
scent may not be able to achieve 0 training error
even if the samples are linearly separable. To ex-
plain this, simply consider a training set with 3 sam-
ples and k = 1, d = 4: x1 = [−1, 1, 0, 0], x2 =
[0,−1, 1, 0], x3 = [0, 0,−1, 1]. All labels are positive.
Then Mtr = [−1/3, 0, 0, 1/3]. If we optimize the X-
hinge loss then the network has no intent to classify
x2 correctly.

Notice that in Figure 9(a), under X-hinge, the gener-
alization performance is still improving even after the
training accuracy starts to decrease. We conjecture
that this indicates a new way of interpreting the role
of regularization in deep nets. On real datasets we typ-
ically use sigmoid with cross entropy loss which can be
viewed and a smoothed version of the hinge loss. We
say a data sample is active during training if yf(x) is
small so that the gradient for fitting (x, y) is salient
since it is not well fit yet. With X-hinge all samples
are “equality active”. One message delivered by our
observation is that having more samples to be “active”

during training will make convolution filters have bet-
ter generalization property, but may hurt with train-
ing data fitting. In practice we cannot recommend
using X-hinge loss since the network will fail to fit the
training set if we keep all samples to be equally “ac-
tive”. But we can view this as a trade off when using
logistic loss: keeping more samples to be “active” dur-
ing training with gradient descent will help with some
generalization property (e.g. better Conv filters) but
cause underfitting. For regularization we may want to
keep as many samples to be active as possible while
still be able to fit the training samples. This provides
a new view of the role of regularization: Taking weight
norm regularization as an example, traditional inter-
pretation is that controlling the weight norm will re-
duce the capacity of neural nets, which may not be
sufficient to explain non-overfitting in very large nets.
The new potential interpretation is that, if we keep the
weight norm to be small during training, the training
samples are more “active” during gradient descent so
that better convolution filters can be learned for gen-
eralization purposes. Verifying this conjecture on real
datasets will be an interesting future direction.
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